Math, asked by kailashkothiyal2380, 9 months ago

Find quadriatic polynomial whose zeros are -4 and -5

Answers

Answered by Anonymous
6

 \large\bf\underline{Given:-}

Zeroes of required polynomial are given as -4 and -5.

 \large\bf\underline {To \: find:-}

  • The quadratic polynomial.

 \huge\bf\underline{Solution:-}

Let α and β are the zeroes of the required polynomial.

  • Let α be -4 and β be -5.

Sum of zeroes :-

 \rm  \rightarrowtail  \alpha  +  \beta  =  - 4 + ( - 5) \\  \\  \rightarrowtail \rm \: \alpha  +  \beta  =  - 4 - 5 \\  \\  \rightarrowtail \rm \: \alpha  +  \beta  =  - 9

Product of zeroes :-

 \rightarrowtail \rm \: \alpha  \beta  =  - 4 \times ( - 5) \\  \\  \rightarrowtail \rm \: \alpha  \beta  =  20

Formula for quadratic polynomial:-

 \bigstar \bf   \:  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta

 \dashrightarrow \rm \:  {x}^{2}  - ( - 9)x + (20) \\  \\  \dashrightarrow \rm \: {x}^{2}  + 9x + 20 \\ \\   \bullet \bf \:quadratic \: polynomial \:is  =  {x}^{2}  + 9x + 20

\large\underline{\bf\dag \:  Verification:-}

  • p(x) = x² + 9x + 20

  • a = 1
  • b = 9
  • c = 20

 \ddag \rm \: sum \: of \: zeroes =  \frac{ - b}{a}  \\  \\  \longrightarrow \rm \:  - 9 =  \frac{ - 9}{1}  \\  \\ \longrightarrow \rm \:  - 9 =  - 9 \\  \\  \ddag \rm \: product\: of \: zeroes =  \frac{ c}{a}  \\  \\ \longrightarrow \rm \:20 =  \frac{20}{1}  \\  \\ \longrightarrow \rm \:20 = 20

LHS = RHS

hence Verified

Answered by sethrollins13
13

✯✯ QUESTION ✯✯

Find quadriatic polynomial whose zeros are -4 and -5 ..

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\implies\tt{Let\:\alpha\:of\:Zeroes=-4}

\implies\tt{Let\:\beta\:of\:Zeroes=-5}

Now ,

Sum Of Zeroes : -

\implies\tt{\alpha+\beta=-4+(-5)}

\implies\tt{\alpha+\beta=-9}

Product Of Zeroes : -

\implies\tt{\alpha\beta=-4\times{(-5)}}

\implies\tt{\alpha\beta=20}

Using Formula : -

\implies\tt{\large{\boxed{\bold{\bold{\orange{\sf{{x}^{2}-(\alpha+\beta)x+(\alpha\beta)}}}}}}}

Putting Values : -

\implies\tt{{x}^{2}-(-9)x+(20)}

\implies\tt{{x}^{2}+9x+20}

So , the quadratic polynomial is x² + 9x + 20 ..

_______________________

VERIFICATION : -

\implies\tt{{x}^{2}+9x+20}

Here : -

  • a ⇒ 1
  • b ⇒ 9
  • c ⇒ 20

Sum Of Zeroes : -

\implies\tt{\dfrac{-b}{a}=\dfrac{-(9)}{1}}

\implies\tt{-9=-9}

\red\longmapsto\:\large\underline{\boxed{\bf\green{L.H.S}\orange{=}\purple{R.H.S}}}

Product Of Zeroes : -

\implies\tt{\dfrac{c}{a}=\dfrac{20}{1}}

\implies\tt{20=20}

\purple\longmapsto\:\large\underline{\boxed{\bf\orange{L.H.S}\green{=}\red{R.H.S}}}

HENCE VERIFIED

Similar questions