Math, asked by 6xgaming13, 1 month ago

Find r, if ^16C4+^C5+^17C6+^18C7=^19Cr

Answers

Answered by mathdude500
2

Appropriate Question :-

Find r, if

\qquad\sf \: \ ^{16}C_4 + \ ^{16}C_5 + \ ^{17}C_6 + \ ^{18}C_7 = \ ^{19}C_r \\  \\

Answer:

\qquad\qquad \qquad\boxed{ \sf{ \:\bf \: r = 7 \:, \: 12 \: }} \\  \\

Step-by-step explanation:

Given that,

\qquad\sf \: \ ^{16}C_4 + \ ^{16}C_5 + \ ^{17}C_6 + \ ^{18}C_7 = \ ^{19}C_r \\  \\

\qquad\sf \: \: (\ ^{16}C_4 + \ ^{16}C_5) + \ ^{17}C_6 + \ ^{18}C_7 = \ ^{19}C_r \\  \\

We know,

\qquad\boxed{ \sf{ \:\ ^{n}C_r \:  +  \: \ ^{n}C_{r - 1} = \ ^{n + 1}C_r \: }} \\  \\

So, using this result, we get

\qquad\sf \:   \: \ ^{17}C_5 + \ ^{17}C_6 + \ ^{18}C_7 = \ ^{19}C_r \\  \\

\qquad\sf \:   \: (\ ^{17}C_5 + \ ^{17}C_6) + \ ^{18}C_7 = \ ^{19}C_r \\  \\

Again, using the same result, we get

\qquad\sf \:   \: \ ^{18}C_6 + \ ^{18}C_7 = \ ^{19}C_r \\  \\

\qquad\sf \:   \:  \ ^{19}C_7 = \ ^{19}C_r \\  \\

We know,

\qquad\boxed{ \sf{ \:\begin{gathered}\begin{gathered}\bf\: \ ^{n}C_x = \ ^{n}C_y \: \sf\implies \begin{cases} &\sf{x = y}\\ &\sf \: or \\ &\sf{n = x + y} \end{cases}\end{gathered}\end{gathered} \: }} \\  \\

So, using this result, we get

\qquad\sf \: r = 7 \:  \: or \:  \: 19 = r + 7 \\  \\

\qquad\sf\implies \bf \: r = 7 \:  \: or \:  \: r = 12 \\  \\

Similar questions