Math, asked by srivathsav117, 5 months ago

Find radius of curvature of​

Attachments:

Answers

Answered by ankitajiteshpatel
0

Answer:

The radius of curvature of a curve at a point M(x,y) is called the inverse of the curvature K of the curve at this point: R=1K. Hence for plane curves given by the explicit equation y=f(x), the radius of curvature at a point M(x,y) is given by the following expression: R=[1+(y′(x))2]32|y′′(x)|.

Step-by-step explanation:

Please mark me as Braniest ok and I hope you that it's helpful for you

Answered by shadowsabers03
32

Given,

\small\text{$\longrightarrow y=a\sec^3\theta$}

Taking reciprocal,

\small\text{$\longrightarrow \dfrac{1}{y}=\dfrac{1}{a}\cos^3\theta\quad\dots(1)$}

But given,

\small\text{$\longrightarrow x=a\cos^3\theta$}

\small\text{$\longrightarrow\dfrac{x}{a}=\cos^3\theta$}

Then (1) becomes,

\small\text{$\longrightarrow \dfrac{1}{y}=\dfrac{1}{a}\cdot\dfrac{x}{a}$}

\small\text{$\longrightarrow y=\dfrac{a^2}{x}$}

\small\text{$\longrightarrow dy=-\dfrac{a^2}{x^2}\,dx$}

Now,

\small\text{$\longrightarrow ds=\sqrt{(dx)^2+(dy)^2}$}

\small\text{$\longrightarrow ds=\sqrt{(dx)^2+\left(-\dfrac{a^2}{x^2}\,dx\right)^2}$}

\small\text{$\longrightarrow ds=\sqrt{(dx)^2+\dfrac{a^4}{x^4}\,(dx)^2}$}

\small\text{$\longrightarrow ds=dx\sqrt{1+\dfrac{a^4}{x^4}}$}

\small\text{$\longrightarrow ds=\dfrac{\sqrt{x^4+a^4}}{x^2}\,dx$}

and,

\small\text{$\longrightarrow\alpha=\tan^{-1}\left(\dfrac{dy}{dx}\right)$}

\small\text{$\longrightarrow\alpha=\tan^{-1}\left(-\dfrac{a^2}{x^2}\right)$}

\small\text{$\longrightarrow d\alpha=\dfrac{\dfrac{2a^2}{x^3}}{1+\left(-\dfrac{a^2}{x^2}\right)^2}\,dx$}

\small\text{$\longrightarrow d\alpha=\dfrac{2a^2x}{x^4+a^4}\,dx$}

Then radius of curvature is given by,

\small\text{$\longrightarrow\rho=\dfrac{ds}{d\alpha}$}

\small\text{$\longrightarrow\rho=\dfrac{\left(\dfrac{\sqrt{x^4+a^4}}{x^2}\,dx\right)}{\left(\dfrac{2a^2x}{x^4+a^4}\,dx\right)}$}

\small\text{$\longrightarrow\underline{\underline{\rho=\dfrac{(x^4+a^4)^{\frac{3}{2}}}{2a^2x^3}}}$}

Similar questions