Math, asked by sumitra6464packob, 1 month ago

Find range of k such that range of y € R
y = x^2 - x - 2 / x^2 + kx​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \tt{ \blue{y =  \dfrac{ {x}^{2}  - x - 2}{ {x}^{2}  + kx}}}

 \sf{  \implies \: y( {x}^{2} + kx)  =  {x}^{2}  - x - 2}

 \sf{  \implies \: y{x}^{2} + kyx  =  {x}^{2}  - x - 2}

 \sf{  \implies \: (y - 1){x}^{2} + (ky + 1)x  + 2 =    0}

 \sf{ \implies \: x =  \dfrac{ - (ky + 1) \pm \sqrt{(ky + 1)^{2} - 8(y  - 1) } }{2(y - 1)}  } \\

 \sf{ \implies \: x =  \dfrac{ - (ky + 1) \pm \sqrt{k^{2} y^{2} + 2ky  + 1- 8y   + 8} }{2(y - 1)}  } \\

 \sf{ \implies \: x =  \dfrac{ - (ky + 1) \pm \sqrt{k^{2} y^{2} + (2k - 8)y   + 9} }{2(y - 1)}  } \\

Since,  y\in\mathbb{R} so,

 \sf(2k - 8)^{2}  - 36 {k}^{2}  \geqslant 0 \\

 \sf \implies4(k - 4)^{2}  - 36 {k}^{2}  \geqslant 0 \\

 \sf \implies(k - 4)^{2}  - 9 {k}^{2}  \geqslant 0 \\

 \sf \implies \: k ^{2}  - 8k  + 16 - 9 {k}^{2}  \geqslant 0 \\

 \sf \implies \:  - 8k ^{2}  - 8k  + 16 \geqslant 0 \\

 \sf \implies \:  - 8(k ^{2}  + k   - 2) \geqslant 0 \\

 \sf \implies \: k ^{2}  + k   - 2 \leqslant 0 \\

 \sf \implies \: k ^{2}  + 2k - k   - 2 \leqslant 0 \\

 \sf \implies \:k( k   + 2) -1( k    +  2 )\leqslant 0 \\

 \sf \implies \:(k - 1)( k   + 2) \leqslant 0 \\

 \sf \implies \:k \in  [ - 2 , 1]  \\

Similar questions