Math, asked by sahilumadiya7, 1 month ago

find range of sinx + cosx ?​

Answers

Answered by sheetalverma212001
0

Answer:

Let f(x)=|sinx|+|cosx|.

Domain : Domain of the function f(x) will be the intersection of domains of sinx and cosx. ...

Therefore, the domain is (-∞,+∞).

Range : Range of any continuous funtion lies inbetween the minimum and maximum value of that function.

Thus the range of the function f(x) is [-√2,√2].

thankyou.

Answered by SrijanShrivastava
1

sin(x) + cos(x)

 =  \sqrt{2} (  \frac{ \sqrt{2} }{ 2 } \sin(x )  +  \frac{ \sqrt{2} }{2} \cos(x)  )

 =  \sqrt{2} ( \cos( \frac{\pi}{4} )  \sin(x)  +  \sin( \frac{\pi}{4} )  \cos(x) )

 =  \sqrt{2}  \sin(x +  \frac{\pi}{4} )

As, For All real values of θ implies

 - 1 \leq \sin( \theta)   \leq  + 1

 \implies  \sqrt{2}  \sin(x +  \frac{\pi}{4} )  \in [ -  \sqrt{2}, \sqrt{2}  ]

Therefore,

   \boxed{-  \sqrt{2}  \le\sin(x)  +  \cos(x)  \le +  \sqrt{2} , \:  \forall  \: x \in  \mathbb{R}}

Similar questions