Math, asked by haridas2, 1 year ago

find rational root of the polynomial f(x)=2x3+x2-7x-6

Answers

Answered by MaheswariS
24

\textbf{Given:}

f(x)=2\,x^3+x^2-7\,x-6

\textbf{To find:}

\text{Roots of f(x)}

\textbf{Solution:}

\text{Consider,}

f(x)=2\,x^3+x^2-7\,x-6

\text{Sum of the coefficients of odd powers of x}=2+(-7)=-5

\text{Sum of the coefficients of even powers of x}=1+(-6)=-5

\implies\text{Sum of the coefficients of odd powers of x}=\text{Sum of the coefficients of even powers of x}

\therefore(x+1)\;\text{is a factor of f(x)}

\textbf{By synthetic division,}

\begin{array}{r|cccc}-1&2&1&-7&-6\\&&-2&1&6\\\cline{2-5}&2&-1&-6&|\,0\end{array}

\textbf{Quotient}=2\,x^2-x-6

2\,x^2-x-6=0

2\,x^2-4x+3x-6=0

2x(x-2)+3(x-2)=0

(2x+3)(x-2)=0

\implies\,x=\dfrac{-3}{2},2

\therefore\textbf{Roots of f(x) are $\bf\,-1,\dfrac{-3}{2},2$}

Find more:

Is the roots of 32 x cube minus 48 x square + 22 x minus 3 equal to zero are in AP then the middle root is

https://brainly.in/question/17305036

Answered by Rhebksnwn
9

f(x) =2x^3+x^2-5x-2x-6 2x^3-2x+x^2-5x-6

2x (x^2-1) +x^2-6x+x-6 2x(x+1) (x-1) +x(x-6) +1(x-6) 2x(x+1) (x-1) +(x-6) (x+1) (x+1) (2x(x-1) +x-6) (x+1) (2x^2-2x+x-6) (x+1) (2x^2-x-6) (x+1) (2x^2-4x+3x-6) (x+1) (2x(x-2) +3(x-2)) f(x) =(x+1) (x-2) (2x+3) root of polynomial in given by (x+1), (x-2), (2x+3) =0 (x=-1, x=2, x=-3/2)

Similar questions