Math, asked by ashuapril13pduwf9, 9 months ago

Find real numbers x and y if (x-iy) (3-5i) is the conjugate of - 6-24i?
Keep signs in mind please! ​

Answers

Answered by jarsandbars302
0

Answer:

According to the question

x=3; y=-3

Answered by Yugant1913
22

☆given

  • ( x - iy) ( 3 + 5i) is the conjugate of -6 -24i

☆to find

  • find the values of real number x and y

formula

  • [ i² = -1 ]

solution

The conjugate of -6 + 24i.

given, ( x - iy) ( 3 + 5i) = -6 + 24i

\longmapsto\pmb \: x - iy =  \dfrac{ - 6 + 24i}{3 + 5i}  \\ \\   \\\longmapsto\pmb \: x - iy =  \dfrac{( - 6 + 24i)(3 - 5i)}{(3 + 5i)(3 - 5i)}  \\  \\  \\ \longmapsto\pmb \: x - iy =  \frac{ - 18 + 30i + 72i - 120i^{2} }{ {(3)}^{2} -   {(5i)}^{2}  }  \\  \\\\

\longmapsto\pmb \: x - iy =  \dfrac{ - 18 + 102i + 120}{9 -  25i^{2} }  \qquad \qquad \red{ \{   {i}^{2}  =  - 1 \} }\\

\longmapsto\pmb \: x - iy =  \dfrac{102 + 102i}{9 + 25}  \\  \\  \\ \longmapsto\pmb \: x - iy =  \frac{102 + 120i}{34}  \\  \\  \\ \longmapsto\pmb \: x - iy =  \frac{102}{34}  +  \frac{102i}{34}  \\  \\  \\ \longmapsto\pmb \: x - iy = 3 + 3i

  \qquad \qquad  \bigg \{  \boxed{\therefore  \: x = 3 \: and \: y =  - 3} \bigg  \}

hence the value of x and y is 3 and -3

Similar questions