Math, asked by sachinsonawane90, 4 months ago

Find real parameter p such that the solutions to the equation (p - 3).x² + (p²+1)x - 11p+18 = 0 are lengths of the legs of the right triangle with the hypotenuse length √17​

Answers

Answered by amitnrw
1

Given : solutions to the equation (p - 3).x² + (p²+1)x - 11p+18 = 0 are lengths of the legs of the right triangle with the hypotenuse length √17​

To Find : Real values of p

Solution:

(p - 3).x² + (p²+1)x - 11p+18 = 0

α + β  = - (p²+1) /  (p - 3)

αβ  =(18 - 11p) /  (p - 3)

α² + β²  = 17    ( lengths of the legs of the right triangle with the hypotenuse length √17​ )

α + β  = - (p²+1) /  (p - 3)

Squaring both sides

=> α² + β² + 2αβ   =   (p²+1)² /  (p - 3)²

=> 17 + 2(18 - 11p) /  (p - 3)  =  (p²+1)² /  (p - 3)²

=> 17  (p - 3)² + 2(18 - 11p) (p - 3)  = (p²+1)²

=> 17(p² - 6p + 9) + 2(-11p² + 51p - 54)  = p⁴ + 2p²  + 1

=>  17 p² - 102p + 153  -22p² +102p - 108  = p⁴ + 2p²  + 1

=>  -5p² + 45 =  p⁴ + 2p²  + 1

=>  p⁴ + 7p²  - 44 = 0

=>  p⁴ + 11p² - 4p²  - 44 = 0

=> p²(p² + 11) - 4(p²  + 11) = 0

=> (p² - 4)(p²  + 11) = 0

=> p² = 4 ,      p²  = - 11  ( imaginary )

=> p = ± 2

p = ± 2

Learn More:

Values of k for which the quadratic equation 2x^2 – kx + k = 0 has ...

brainly.in/question/8043948

What kind of roots or solution each of the quadratic equation? b ...

brainly.in/question/25658971

Similar questions