Math, asked by shreya6170, 2 months ago

find real roots and difference of real roots of equation x=√6+x​

Answers

Answered by kiranmaharana2020
1

Answer:

 {x}^{2}  - x -  \sqrt{6}  = 0

x =  \frac{1 +  \sqrt{1 + 4 \sqrt{6} } }{2}  , \frac{1 -  \sqrt{1 + 4 \sqrt{6} } }{2}

difference in the real roots is

\frac{1 +  \sqrt{1 + 4 \sqrt{6} }  \:  - 1 +  \sqrt{1 + 4 \sqrt{6} }  }{2}

 =  \frac{2 \sqrt{1 + 4 \sqrt{6} } }{2}

 =  \sqrt{1 + 4 \sqrt{6} }

Similar questions