Hindi, asked by Anonymous, 1 month ago

Find real \theta Such that \sf\dfrac{3+2iSin\theta}{1-2iSin\theta} is
A) real B) Purely imaginary

Answers

Answered by assingh
29

Topic :-

Complex Number

Given :-

\mathtt{\dfrac{3+2i\sin \theta}{1-2i\sin \theta}}

To Find :-

Real \theta such that given fraction is :-

  • Real
  • Purely Imaginary

Concept Used :-

A complex number, z = a + ib is real when b = 0 and purely imaginary if a = 0.

General solution of trigonometric equation :-

\mathtt{If\:\sin\theta=\sin \alpha, \:then\:\theta=n\pi +(-1)^n\alpha,\:n\:\epsilon\:Integer}

\mathtt{If\:\sin^2\theta=\sin^2 \alpha, \:then\:\theta=n\pi \pm\alpha,\:n\:\epsilon\:Integer}

Solution :-

For Real number

For number to be real, coefficient of 'i' should be Zero.

\mathtt{2\sin\theta=0}

\mathtt{\sin\theta=\sin0}

\mathtt{\theta=n\pi +(-1)^n(0)}

\mathtt{\theta=n\pi}

For purely imaginary number

For number to be purely imaginary, real part should vanish.

\mathtt{\dfrac{3+2i\sin \theta}{1-2i\sin\theta}\times \dfrac{1+2i\sin \theta}{1+2i\sin\theta} }

\mathtt{\dfrac{3+6i\sin\theta+2i\sin\theta+4i^2\sin^2\theta}{1-4i^2\sin^2\theta}}

As we know, i² = -1,

\mathtt{\dfrac{(3-4\sin^2\theta)+i(8\sin\theta)}{1+4\sin^2\theta}}

Real part should vanish. So,

\mathtt{\dfrac{3-4\sin^2\theta}{1+4\sin^2\theta}=0}

\mathtt{3-4\sin^2\theta=0} as \theta is real.

\mathtt{\sin^2\theta=\dfrac{3}{4}=\left (\dfrac{\sqrt3}{2} \right)^2}

\mathtt{\sin^2\theta=\left (\sin\dfrac{\pi}{3} \right)^2}

\mathtt{\theta=n\pi \pm\dfrac{\pi}{3}}

Answer :-

So, values of \theta for :-

\bullet\:\:\mathtt{Real\:is\:\:\theta=n\pi}

\bullet\:\: \mathtt{Purely\:Imaginary\:is\:\:\theta=n\pi \pm\dfrac{\pi}{3}}


Asterinn: Pantomath :kul:
Similar questions