Math, asked by sweetie627, 4 months ago

find relationship between zeros and coefficient x square + 4 x + 4 is equals to zero​

Answers

Answered by amansharma264
6

EXPLANATION.

Relationship between zeroes and coefficient,

⇒ F(x) = x² + 4x + 4 = 0.

As we know that,

Sum of zeroes of a quadratic equation,

⇒ α + β = -b/a.

⇒ α + β = -(4).

Products of zeroes of a quadratic equation,

⇒ αβ = c/a.

⇒ αβ = 4.

Equation = x² + 4x + 4.

Factorizes the equation into middle term splits, we get.

⇒ x² + 2x + 2x + 4 = 0.

⇒ x(x + 2) + 2(x + 2)  = 0.

⇒ (x + 2)(x + 2) = 0.

⇒ (x + 2)² = 0.

⇒ x = -2,-2.

Sum = -2 + (-2) = -4.

Products = (-2)(-2) = 4.

HENCE PROVED.

                                                                                       

MORE INFORMATION.

Conditions for common roots.

Let quadratic equation are a₁x² + b₁x + c₁ = 0 and a₂x² + b₂x + c₂ = 0.

(1) = If only one root is common.

x = b₁c₂ - b₂c₁/a₁b₂ - a₂b₁.

y = c₁a₂ - c₂a₁/a₁b₂ - a₂b₁.

(2) = if both roots are common,

a₁/a₂ = b₁/b₂ = c₁/c₂.

Answered by mathdude500
4

\large\underline\purple{\bold{Solution :-  }}

\tt \ \: :  ⟼ f(x) =  {x}^{2}  + 4x + 4

\tt \ \: :  ⟼ f(x) =  {x}^{2}  + 2x + 2x + 4

\tt \ \: :  ⟼ f(x) = x(x + 2) + 2(x + 2)

\tt \ \: :  ⟼ f(x) = (x + 2)(x + 2)

\tt\implies \: \: zeroes \: of \: \bf \: f(x) \: \tt \:   =  - 2 \: and \:  - 2

\tt \ \: :  ⟼ Let \:  \alpha  =  - 2 \: and \:  \beta  =  - 2

\tt\implies \:Sum \: of \: zeroes \:  =  \alpha  +  \beta  =  - 2 - 2 =  - 4

\tt\implies \: \alpha +   \beta  =  - \dfrac{4}{1}

\tt\implies \: \alpha  +  \beta  =  - \dfrac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }

\tt \ \: :  ⟼ Now, \: Product \: of \: zeroes \:  =  \alpha  \beta  = ( - 2) \times ( - 2) = 4

\tt\implies \: \alpha  \beta  = 4

\tt\implies \: \alpha  \beta  = \dfrac{4}{1}

\tt\implies \: \alpha  \beta  = \dfrac{constant \: term}{coefficient \: of \:  {x}^{2} }

Similar questions