Math, asked by jasrajsinghsethi02, 10 months ago

Find remainder of:
10^1283/514
Pls explain WITH STEPS(DETAILED)

Answers

Answered by TakenName
0

I found the best answer for you.

First, make two parts.

By using multiplication of congruence,

R(\frac{2^{1283}\times5^{1283}}{2\times257}) R stands for remainder

R(\frac{2}{2} \times\frac{2^{1282}}{257} \times\frac{5^{1283}}{257})

2\times R(\frac{2^{1282}}{257} \times\frac{5^{1283}}{257})

2\times R(\frac{2^{1282}}{257}) \times R(\frac{5^{1283}}{257})

Now, use congruence.

Since 2⁸≡257≡-1(mod 257)

→2¹⁶≡1(mod 257)

Exponents :- 1282≡2(mod 16)

2¹²⁸²≡2²(mod 257)

2¹²⁸²≡4(mod 257)

R(\frac{2^{1282}}{257})=8

According to Fermat's little theorem, a^{p-1} ≡ 1(mod p)

→5²⁵⁶≡1(mod 257)

Exponents :- 1283≡3(mod 256)

5¹²⁸³≡5³(mod 257)

5¹²⁸³≡125(mod 257)

R(\frac{5^{1283}}{257})=125

2\times R(\frac{2^{1282}}{257}) \times R(\frac{5^{1283}}{257})2\times 4\times 125 = 1000 ≡ 486(mod 514)

Similar questions