Math, asked by rubirani821, 11 months ago

find remainder using remainder theorem.
p(x) \:  =  \: {x}^{3}  -  \:   {6x \: }^{2}  +   \: 2x \:  -  \: 4 \:  \:  \:  \\ be \: divide \: by \: g(x) \:  =  \: 1 -  \frac{3}{2} x

Attachments:

Answers

Answered by radhika0106
31

Step-by-step explanation:

Given =》

p(x) = x {}^{3}  - 6x { }^{2}  + 2x - 4 \\  g(x) = 1 -  \frac{3}{2} x \\

Solution =》

p(x) = x {}^{3}  - 6x + 2x - 4 \\ g(x) = 1 -  \frac{3}{2} \\  =  \frac{1}{1}  -  \frac{3}{2}  \\ take \: lcm \: of \: 1and \:  \\  =  \frac{2 - 3}{2}  \\  =  \frac{ - 1}{2}  \\

Putting x= -1/ 2 in p(x)

p(x) = x {}^{3}  - 6x + 2x - 4 \\  = ( \frac{ - 1}{2} ) {}^{3}  - 6 \times ( \frac{ - 1}{2} ) {}^{2}  + 2 \times  ( \frac{ - 1}{2} ) - 4 \\  =  \frac{ - 1}{8}  -  \frac{6}{4}  -  \frac{2}{2}  - 4 \\  =  \frac{ - 1 - 12 - 8 - 32}{8}  \\  =  \frac{ - 53}{8}

Answered by Rose08
18

Question :-

Find remainder using remainder theorem when p(x) = x³ - 6x² + 2x - 4 is divided by g(x) = 1 - 3x/2

Explanation :-

Given :

  • p(x) = x³ - 6x² + 2x - 4
  • g(x) = 1 - 3x/2

To find :

The remaining when p(x) is divided by g(x)

Solution :

From the remainder theorem, Let's find the zero of polynomial g(x).

\sf\rightarrow 1 - \: \dfrac{3x}{2} = \: 0

\sf\rightarrow 1 = \: \dfrac{3x}{2}

\sf\rightarrow 3x = 2

\sf\rightarrow x = \dfrac{2}{3}

Now, Putting the value of x in polynomial p(x),

\sf\longrightarrow { (\dfrac{2}{3}) }^{3}  - 6 \times  { (\dfrac{2}{3}) }^{2}  + 2 \times  \dfrac{2}{3}  - 4

\sf\longrightarrow \dfrac{8}{27}  - 6 \times  \dfrac{4}{9}  +  \dfrac{4}{3}  - 4

\sf\longrightarrow \dfrac{8}{27}  -  \dfrac{24}{9}  +  \dfrac{4}{3}  - 4

\sf\longrightarrow \dfrac{8 - 72 + 36 - 108}{27}

\sf\longrightarrow \dfrac{44 - 180}{27}

\sf\huge\therefore -  \dfrac{136}{27}

Hence, the remainder is -136/27.

Similar questions