Math, asked by anilsaikia, 19 hours ago

find remainder when, 2¹⁹⁹⁰÷ 1990 using congruence

Please give me the best Answer

Will mark BRAINLIEST if correct answer is given to me

Expecting answers from high ranked users and please donot spam​

Answers

Answered by mrx550x
1

Answer:

1990=2⋅5⋅199 .

21990≡0(mod2).

21990=(24)497⋅22≡4(mod5).

21990=(2198)10⋅210≡1024≡29(mod199).

Hence

21990=199k+29≡4(mod5)

−k−1≡4(mod5)

k≡0(mod5)

k=5p

21990=995p+29≡0(mod2)

p+1≡0(mod2)

p≡1(mod2)

p=2q+1

21990=995(2q+1)+29=1990q+102

Similar questions