find remainder when, 2¹⁹⁹⁰÷ 1990 using congruence
Please give me the best Answer
Will mark BRAINLIEST if correct answer is given to me
Expecting answers from high ranked users and please donot spam
Answers
Answered by
1
Answer:
1990=2⋅5⋅199 .
21990≡0(mod2).
21990=(24)497⋅22≡4(mod5).
21990=(2198)10⋅210≡1024≡29(mod199).
Hence
21990=199k+29≡4(mod5)
⇒
−k−1≡4(mod5)
⇒
k≡0(mod5)
k=5p
⇒
21990=995p+29≡0(mod2)
⇒
p+1≡0(mod2)
⇒
p≡1(mod2)
⇒
p=2q+1
⇒
21990=995(2q+1)+29=1990q+102
Similar questions