Math, asked by anilji124421, 1 month ago

Find Root. (1) 3x² -5x +3 =0​

Answers

Answered by BilalFNA
0

ANSWER:

3 {x}^{2}  - 5x + 3 = 0

using \: completing \: square \: method

3 {x}^{2} - 5x + 3 = 0

3 {x}^{2} - 5x =  - 3

dividing \: by \: 3 \: on \: both \: sides

 \frac{3 {x}^{2} }{3} -  \frac{5x}{3} =  \frac{ - 3}{3}

 {x}^{2} -  \frac{5x}{3} =  - 1

 ({x})^{2} - 2(x)( \frac{5}{6}) =  - 1

adding \:  ({ \frac{5}{6} })^{2} \: on \: both \: sides

 {(x)}^{2} - 2(x)( \frac{5}{6}) +  (\frac{5}{6} )^{2} =  - 1 + ( \frac{5}{6})^{2}

using \: formula \:  {( a - b)}^{2}  =  {a}^{2} - 2ab +  {b}^{2}

 {(x -  \frac{5}{6}) }^{2}  =  - 1 +  \frac{25}{36}

 {(x -  \frac{5}{6}) }^{2} =  \frac{ - 36}{36}   +  \frac{25}{36}

( { x - \frac{5}{6} })^{2} =   \frac{ - 36 + 25}{36}

( {x -  \frac{5}{6}) }^{2}  =  \frac{11}{36}

taking \: square \: root \: on \: both \: sides

 \sqrt{( {x} -  \frac{5}{6})^{2}  } =  \sqrt{ \frac{11}{36} }

x -  \frac{5}{6} =  \frac{ + }{}  \frac{ \sqrt{11} }{ \sqrt{36} }

x -  \frac{5}{6} =  \frac{ + }{}  \frac{ \sqrt{11} }{6}

x =  \frac{5}{6}  \frac{ + }{}   \frac{ \sqrt{11} }{6}

x =  \frac{5 \frac{ + }{} \sqrt{11}  }{6}

I hope it helps you. Please mark me as BRAINLIEST if you like.

Similar questions