Find root of x^2+6x+8 by completing the square method.
Answers
Answered by
2
Heya!
--------
============================================================
♦Roots by Completing Square ♦
===========================================================
=> x² + 6x + 8 = 0
=> x² + 6x = -8
=> x² + 6x + ( ½ × 6 )² = -8 + ( ½ × 6 )²
=> x² + 6x + (3)² = -8 + (3)²
=> ( x + 3 )² = -8 + 9
=> ( x + 3 )² = 1
=> ( x + 3 )² = (1)²
=> x + 3 = +- 1
=> x + 3 = 1
=> x = -2
=========
.
=> x + 3 = -1
=> x = -4
=========
➰Hence the Roots are -2 and -4
=============================
=========================================================
--------
============================================================
♦Roots by Completing Square ♦
===========================================================
=> x² + 6x + 8 = 0
=> x² + 6x = -8
=> x² + 6x + ( ½ × 6 )² = -8 + ( ½ × 6 )²
=> x² + 6x + (3)² = -8 + (3)²
=> ( x + 3 )² = -8 + 9
=> ( x + 3 )² = 1
=> ( x + 3 )² = (1)²
=> x + 3 = +- 1
=> x + 3 = 1
=> x = -2
=========
.
=> x + 3 = -1
=> x = -4
=========
➰Hence the Roots are -2 and -4
=============================
=========================================================
Answered by
10
Answer:
-2 and -4
Step-by-step explanation:
x²+6x+8 = 0
x²+6x= -8
x²+6x+3²= -8+3²
(x+3)² = -8+9
(x+3)² = 1
(x+3) =√1
x+3 =±1
WHEN x = 1
x= 1-3
x= -2
WHEN x = -1
x = -1-3
x=-4
Similar questions