Math, asked by chauhanhimu181, 7 months ago

find roots by quadratic formula (x-1/x+2)+(x-3/x-4) =10/3​

Answers

Answered by rekhesajeri
2

Answer:

(x-1)/(x-2) + (x-3)/(x-4) =10/3

L.C.M. of (x-2) & (x-4) = (x-2)(x-4)

=> [(x-1)(x-4)+(x-3)(x-2)]/(x-2)(x-4) = 10/3

=> 3(x^2 -5x +4 + x^2 -5x +6) = 10(x-2)(x-4)

=> 3( 2x^2–10x+10) = 10(x^2–6x+8)

=> 6x^2–30x +30 = 10x^2–60x+80

Taking 2 as a common from both sides & cancelling it, we have,

=> 3x^2–15x+15 = 5x^2–30x+40

=>5x^2–3x^2–30x+15x+40–15=0

=> 2x^2 -15x+25=0

Now, by the middle term splitting method,we have,

=> 2x^2 -10x-5x+25=0

=> 2x(x–5) -5(x-5) =0

=> (2x-5)(x-5)=0

=> 2x-5 = 0

So, x= 5/2

Or, x-5= 0

So, x=5

Answered by Anonymous
3

Solution:-

Equation :-

 \rm \to \bigg( \dfrac{x - 1}{x + 2}  \bigg) +    \bigg(\dfrac{x - 3}{x - 4}  \bigg) =  \dfrac{10}{3}

Solving the equation

 \rm \to \dfrac{x - 1}{x + 2}   +    \dfrac{x - 3}{x - 4}  =  \dfrac{10}{3}

Taking lcm

  \rm \to \:  \dfrac{(x - 1)(x - 4) + (x - 3)(x + 2)}{(x + 2)(x - 4)}  =  \dfrac{10}{3}

 \rm \:  \to \dfrac{ {x}^{2} - 4x - x + </u></strong><strong><u>4</u></strong><strong><u> +  {x}^{2} + 2x - 3x - 6  }{ {x}^{2}  - 4x + 2x - 8}  =  \dfrac{10}{3}

 \to \rm \:  \dfrac{2 {x}^{2}  - 5x + </u></strong><strong><u>4</u></strong><strong><u>- x - 6}{ {x}^{2}  - 2x  - 8}  =  \dfrac{10}{3}

 \rm \to \:  \dfrac{2 {x}^{2}  - 6x </u></strong><strong><u>-</u></strong><strong><u> </u></strong><strong><u>2</u></strong><strong><u>}{ {x}^{2} - 2x - 8 }  =  \dfrac{10}{3}

Using cross multiplication methods

  \rm \to \: 3(2 {x}^{2}  - 6x </u></strong><strong><u>-</u></strong><strong><u> 2) = 10( {x}^{2}  - 2x - 8)

 \rm \to \: 6 {x}^{2}  - 18x </u></strong><strong><u>-</u></strong><strong><u> 6 = 10 {x}^{2}  - 20x - 80

 \rm  \to\: 10 {x}^{2}  - 6 {x}^{2}  - 20x + 18x - 80 </u></strong><strong><u>+</u></strong><strong><u> </u></strong><strong><u>6 = 0

 \to \rm \: 4 {x}^{2}  - 2x - </u></strong><strong><u>7</u></strong><strong><u>4</u></strong><strong><u> = 0

 \rm \:  \to \: 2(2 {x}^{2}  - x - </u></strong><strong><u>3</u></strong><strong><u>7</u></strong><strong><u>) = 0

 \rm \to2 {x}^{2}  - x - </u></strong><strong><u>3</u></strong><strong><u>7</u></strong><strong><u> = 0

Now find discriminant ( D)

Formula

 \boxed{ \rm \: D =  {b}^{2}  - 4ac}

So

 \to \:   \rm \: a \:  = 2,b =  - 1 \: and \: c =  - 43

putting the value

 \rm \:  \to \: D = ( - 1) ^{2}  - 4 \times 2 \times  - </u></strong><strong><u>3</u></strong><strong><u>7</u></strong><strong><u>

 \rm \to \: D = 1 + </u></strong><strong><u>2</u></strong><strong><u>9</u></strong><strong><u>6</u></strong><strong><u>

 \to \rm \: D = </u></strong><strong><u>2</u></strong><strong><u>9</u></strong><strong><u>7</u></strong><strong><u>

quadratic formula

 \rm \: x =  \dfrac{ - b \pm \sqrt{D} }{2a}

 \rm \: x =  \dfrac{ - ( - 1) \pm \sqrt{</u></strong><strong><u>2</u></strong><strong><u>9</u></strong><strong><u>7</u></strong><strong><u>} }{2 \times 2}

 \rm \: x =  \dfrac{1 + </u></strong><strong><u>3</u></strong><strong><u> \sqrt{</u></strong><strong><u>3</u></strong><strong><u>3</u></strong><strong><u>} }{4}  \: and \: x =  \dfrac{1 -  </u></strong><strong><u>3</u></strong><strong><u>\sqrt{</u></strong><strong><u>3</u></strong><strong><u>3</u></strong><strong><u>} }{4}

Similar questions