Math, asked by shivikaR, 1 year ago

find roots by spilting the middle term​

Attachments:

Answers

Answered by abc6333
4

x {}^{2}  + 2 \sqrt{2} x - 6 = 0 \\ 6 \: is \: split \: into  \:  + 3 \sqrt{2 \: }  \: and \:  -  \sqrt{2} \\ x \ {}^{2}  + 3 \sqrt{2} x -  \sqrt{2}  - 6 = 0 \\ x(x + 3 \sqrt{2} ) -  \sqrt{2} (x + 3 \sqrt{2} ) = 0 \\ (x -  \sqrt{2} )(x + 3 \sqrt{2} ) = 0 \\ x -  \sqrt{2}  = 0  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \: x + 3 \sqrt{2 } = 0 \\ x =  \sqrt{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  - 3 \sqrt{2}

Answered by Anonymous
26

SOLUTION:-

 {x}^{2}  + 2 \sqrt{2} x  - 6 = 0 \\  \\  =  >  {x}^{2}  + 3 \sqrt{2x}  - 1 \sqrt{2x}  - 6 = 0 \\  \\   =  > x(x  +  3 \sqrt{2} ) - \sqrt{2} (x  +  3 \sqrt{2} ) = 0 \\  \\  =  >  (x  +  3 \sqrt{2} )(x   -  \sqrt{2} ) = 0 \\  \\  =  > x  +  3 \sqrt{2}  = 0 \:  \: or \:  \: x  -   \sqrt{2}  = 0 \\  \\  =  > x = -  3 \sqrt{2}  \:  \: or \:  \: x =   \sqrt{2}

Hope it helps ☺️

Similar questions