Math, asked by AyushBhatt07, 23 days ago

find roots of ax²+ (a+b)x+b=0 by quadratic formula​

Answers

Answered by hukam0685
9

Step-by-step explanation:

Given:

a {x}^{2}  + (a + b)x + b = 0 \\

To find: Roots of equation using quadratic formula.

Solution:

Quadratic formula:

\boxed{\bold{x_{1,2} =  \frac{ - b ±  \sqrt{ {b}^{2} - 4ac } }{2a}}}  \\

Here

a = a \\ b = a + b \\ c = b \\

on comparison with standard quadratic equation

ax²+bx+c,a≠0

x_{1,2} =  \frac{ -(a +  b) ± \sqrt{ {(a + b)}^{2} - 4ab } }{2a}  \\  \\ x_{1,2} = \frac{ -(a +  b) ± \sqrt{ { {a}^{2} + b }^{2}  + 2ab- 4ab } }{2a} \\  \\\\ x_{1,2} = \frac{ -(a +  b) ±  \sqrt{ { {a}^{2} + b }^{2}   - 2ab } }{2a} \\  \\x_{1,2} =\frac{ -(a +  b) ±  \sqrt{ { {(a - b)}^{2}}}}{2a}  \\  \\ x_{1,2} =\frac{ -(a +  b) ±  a - b}{2a}

Case 1:Take +ve sign

x_1 =  \frac{ - a - b + a - b}{2a}  \\  \\ x_1 =  \frac{ - 2b}{2a}  \\  \\ \bold{\red{x_1 =  \frac{ - b}{a}}}  \\  \\

Case 2: Take (-) sign

x_2=  \frac{ - a - b - a + b}{2a}  \\  \\ x_2 =  \frac{ - 2a}{2a}  \\  \\ \bold{\green{x_2 =  - 1}} \\  \\

Final answer:

\bold{\red{x =  \frac{ - b}{a} }} \\  \\\bold{\green{ x =  - 1}} \\

Hope it helps you.

To learn more on brainly:

1)\sqrt{5} x^{2}+2x-3\sqrt{5}

https://brainly.in/question/43169837

2)find the roots of the equation x^2+2x-35=0 are

https://brainly.in/question/16711937

Similar questions