Find roots of quadratic equation x² + 2x- 7 = 0 (use formula method).
Answers
By using quadratic formula
Here
- a = 1
- b = 2
- c = - 7
Substitute values in formula
By using quadratic formula,
\implies \boxed{\sf x = \dfrac{ - b\pm \sqrt{ {b}^{2} - 4ac} }{2a}}
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⟹ x= −b± root b^2 −4ac/2a
Here,
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀•a = 1
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀•b = 2
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀•c = - 7
Substitute values in formula
\begin{gathered}\implies\sf x = \dfrac{ - 2\pm \sqrt{ {2}^{2} - 4 \times 1 \times ( - 7)} }{2 \times 1} \\ \\ \implies\sf x = \dfrac{ - 2\pm \sqrt{4 + 28} }{2} \\ \\\implies \sf x = \dfrac{ - 2\pm \sqrt{32} }{2} \\ \\ \bf Taking \: +ve \: \: sign \\ \\ \implies \boxed{\sf x = \dfrac{ - 2 + \sqrt{32} }{2}} \\ \\ \bf Taking \: - ve \: \: sign \\ \\ \implies \boxed{\sf x = \dfrac{ - 2 - \sqrt{32} }{2}}\end{gathered}
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⟹x= −2± root 2^2−4×1×(−7)/2×1
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⟹x= 2−2± 4+28
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⟹x= 2−2± 32
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Taking +ve sign
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⟹ x= −2+ root 32 /2
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Taking −ve sign
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⟹ x= −2− root 32 /2