Math, asked by FmjfjjdjxjnsiKa, 9 months ago

Find roots of the given quadratic equations by using quadratic formula 1by2 x square minus root 11x +1=0

Answers

Answered by Anonymous
2

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Roots \ are \ \sqrt10+\sqrt11 \ and \ -\sqrt10+\sqrt11}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{\frac{1x^{2}}{2}-\sqrt11+1=0}}

\sf\pink{To \ find:}

\sf{The \ roots \ of \ the \ equation \ by}

\sf{completing \ the \ square \ method.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{\frac{1x^{2}}{2}-\sqrt11+1=0}}

\sf{Multiply \ equation \ by \ 2 \ throughout}

\sf{\implies{x^{2}-2\sqrt11x+2=0}}

\sf{Here, \ Coefficient \ of \ x^{2}=1}

\sf{Coefficient \ of \ x=-2\sqrt11}

\sf{Constant=2}

\sf{\implies{x^{2}-2\sqrt11x+11=-1}}

_______________________________

\sf{\implies{(\frac{1}{2}\times \ Coefficient \ of \ x)^{2}}}

\sf{implies{(\frac{1}{2}\times \ -2\sqrt11)^{2}}}

\sf{\implies{(\frac{-2\sqrt11}{2})^{2}}}

\sf{\implies{(-\sqrt11)^{2}}}

\sf{\implies{11}}

_______________________________

\sf{Add \ 11 \ on \ both \ sides \ of \ equation}

\sf{\implies{x^{2}-2\sqrt11x+11=-1+11}}

\sf{\implies{x^{2}-2\sqrt11x+11=10}}

\sf{\implies{(x-\sqrt11)^{2}=10}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\implies{x-\sqrt11=\sqrt10 \ or \ -\sqrt10}}

\sf{\implies{x=\sqrt10+\sqrt11 \ or \ -\sqrt10+\sqrt11}}

\sf\purple{\tt{\therefore{Roots \ are \ \sqrt10+\sqrt11 \ and \ -\sqrt10+\sqrt11}}}

Similar questions