Math, asked by THEmultipleTHANKER, 3 months ago

Find roots


\sf \sqrt{2}x^{2} +7x+5\sqrt{2}

Answers

Answered by amritamohanty1472
46

Answer:

Question :-

 \bf \: Find \: the \: roots \: of \:  \sqrt{2} {x}^{2}  + 7x + 5 \sqrt{2}

To Find :-

  • Find the roots

Solution :-

 \bf Here, \\  \bf \: We \: have \: to \: factor \:  \sqrt{2}  {x}^{2}  + 7x + 5 \sqrt{2} = 0 \\  \bf \:   = \sqrt{2} {x}^{2}  + 2x + 5x + 5 \sqrt{2 }  = 0 \\  \bf \:  = x \sqrt{2} (x +  \sqrt{2} ) + 5(x +  \sqrt{2}) = 0 \\ \bf  = (x \sqrt{2} + 5)(x +  \sqrt{2} )  =  0 \\    \bf \: x =  \frac{ - 5}{ \sqrt{2} } , -  \sqrt{2}

Hence ,

  •    \bf \pink { \: Roots \:  are  \frac{ - 5}{ \sqrt{2} } ,- \sqrt{2} }

________________________________

____________________

❥ @amritamohanty1472

Answered by Mysteryboy01
0

 =  \sqrt{2}  {x}^{2}  + 7x + 5 \sqrt{2}  \\  \\  =  \sqrt{2}  {x}^{2}  + 5x + 2x + 5 \sqrt{2}  \\  \\  x \sqrt{2} (x +  \sqrt{2} ) + 5(x +  \sqrt{2} ) = 0 \\  \\ (x \sqrt{2}  + 5)(x +  \sqrt{2} ) = 0 \\  \\ x =  \frac{ - 5}{ \sqrt{2} }  \:  \: and \:  \:  -  \sqrt{2}

Similar questions
Math, 3 months ago