Math, asked by swalihakadvekar, 3 months ago


find S3 for an A.P 3,5,7,9

Answers

Answered by 69ArPiT69
6

Answer:

n=3

a=3

d=5-3=2

S3 = n/2[2a+(n-1)d]

= 3/2[2*3+(3-1)2]

= 3/2[6+4]

= 3/2*10

=3*5

= 15

Answered by llXxMrSubanshxXll
587

 \red{\bigstar \large\underline{\boxed{\bf\pink{Question:-}}}}

 \tt Find\: S_3\: for\: an\: A.P\: 3,5,7,9

 \red{\bigstar \large\underline{\boxed{\bf\pink{Answer:-}}}}

 \bf \green{\dag{\underline {Given:-}}}

{\orange {\sf A.P\: is \:3,5,7,9}}

 \:  \:  \:  \:  \:  \:  \:  \:  \: ➪{\orange {\sf a=3}}\\ \:  \:  \:  \:  \:  \:  \:  \:  \: ➪{\orange{\sf d=2}}\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ➪{\orange{\sf n=3}}

 \bf \green{\dag{\underline {To\:Find:-}}}

 {\orange {\sf Sum\:of \:3\:terms \:of\:an\:A.P}}

 \bf \green{\dag{\underline {Solution:-}}}

 {\pink {\boxed {\red{\pmb {S_n=\dfrac{n}{2}{\Big[2a+(n-1)d\Big]}}}}}}

 \longrightarrow{\purple {\sf S_3=\dfrac{3}{2}\Big[2\times 3+(3-1)2\Big]}}

 \longrightarrow{\purple {\sf S_3=\dfrac{3}{2}\Big[6+2\times 2\Big]}}

 \longrightarrow{\purple {\sf S_3=\dfrac{3}{2}\Big[6+4\Big]}}

 \longrightarrow{\purple {\sf S_3=\dfrac{3}{2}\Big[10\Big]}}

 \longrightarrow{\purple {\sf S_3=3 \times 5}}

 \longrightarrow{\underbrace {\overbrace {\color{yellow} {\boxed {\mathfrak {S_3=15}}}}}}

 {\pink {\underline {\boxed {\sf \therefore The\:sum\:of\:3\:terms\:in\:an\:A.P\:is\:15}}}}

Similar questions