Math, asked by jamesmorris1987, 11 months ago

Find s8 for the following geometric sequence: 3, – 6, 12, – 24.

A. –238
B. –255
C. 204
D. 192

Answers

Answered by emansajjad384
0
Step by step :
(Add number with it self) ( forget negative signs ) ( 3 is s2)
.3+3=6 (s3)
.6+6=12 (s4)
.12+12=24 (s5)
.24+24=48 (s6)
.48+48=96 (s7)
.96+96=192 (s8)
Answered by BrainlyConqueror0901
82

Answer:

\huge{\boxed{\boxed{\sf{S8=-255}}}}

Step-by-step explanation:

\huge{\boxed{\boxed{\underline{\sf{SOLUTION-}}}}}

a=3

common ratio=\frac{a2}{a1}=\frac{-6}{3}=-2

To find

sum of 8th term of this G.P

s8 =  \frac{a( {r}^{n} - 1 )}{r - 1}  \\ = ) \frac{3( {( - 2})^{8}  - 1) }{ - 2 - 1}  \\  = ) \frac{3(256 - 1)}{ - 3}   \\  = ) \frac{3  \times 255}{ - 3}  \\  = )  - 255

\huge{\boxed{\boxed{\sf{S8=-255}}}}

_________________________________________

Similar questions