Math, asked by vp403281, 5 months ago

find second and third term of an arithmetic progression whose first term is -2 and common difference is -2​

Answers

Answered by Skyllen
156

Given:-

  • First term of AP, a₁ = -2
  • Common difference, d = -2

To Find:-

  • Second term of AP, a₂ ?
  • And third term of AP, a₃ ?

Solution :-

It's given that first term and common difference is equal to -2 and -2. And for second term of AP, number of terms(ₙ) will be equal to 2.

So as we know that:-

⇒ aₙ = a + (n-1)d

⇒ a₂ = a + (n-1)d

⇒ a₂ = -2 + (2-1)-2

⇒ a₂ = -2 -2

a₂ = -4

Therefore, the second term(a₂) of AP is -4.

Now, for third term, number of terms(ₙ) will be equal to 3 And common difference and first term will remain same.

⇒ a₃ = a + 2d

⇒ a₃ = -2 + 2(-2)

⇒ a₃ = -2 - 4

a₃ = -6

Therefore, the third term(a₃) of AP is -6.

NOTE:- here we could use the aₙ=a+(n-1)d formula too, for finding the third term.

Answered by Anonymous
56

AnswEr-:

  • \underline{\pink{\boxed {\mathrm {\bf{ a_{2} \: or\:Second\:term\:of\:A.P \:= -4}}}}}

  • \underline{\pink{\boxed {\mathrm {\bf{ a_{3} \: or\:Third\:term\:of\:A.P \:= -6}}}}}

Explanation-:

\mathrm { Given -:}\\

  • First Term of A.P or \sf{a_{1}} or a is -2 .
  • Common Difference or D is -2

\mathrm { To\:Find -:}\\

  • \sf{a_{2}} or Second term of A.P.
  • \sf{a_{3}} or Third term of A.P .

\dag{\mathrm { Solution \:of\:Question-:}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline {\mathrm{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}\:

As , We know that,

  • \underline{\red{\boxed {\dag{\mathrm{a_{n} = a +(n-1) d }}}}}

  • Here ,
  • First Term of A.P or \sf{a_{1}} or a is -2 .
  • -2 .Common Difference or D is -2
  • \sf{a_{n} } or Number of term -: 2 nd Term

Now , By Putting known Values in Formula-:

  • \longrightarrow {\mathrm {\bf{ a_{2} = (-2)+(2-1)(-2)}}}

  • \longrightarrow {\mathrm {\bf{ a_{2} = (-2)+1 (-2)}}}

  • \longrightarrow {\mathrm {\bf{ a_{2} = -2-2}}}

  • \underline{\pink{\boxed {\mathrm {\bf{ a_{2} = -4}}}}}

Therefore-:

  • \underline{\pink{\boxed {\mathrm {\bf{ a_{2} \: or\:Second\:term\:of\:A.P \:= -4}}}}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline {\mathrm{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}\:

Now , As , We know that,

  • \underline{\red{\boxed {\dag{\mathrm{a_{n} = a +(n-1) d }}}}}

  • Here ,
  • First Term of A.P or \sf{a_{1}} or a is -2 .
  • Common Difference or D is -2
  • \sf{a_{n} } or Number of term -: 3 rd Term

Now , By Putting known Values in Formula-:

  • \longrightarrow {\mathrm {\bf{ a_{3} = (-2)+(3-1)(-2)}}}\\

  • \longrightarrow {\mathrm {\bf{ a_{3} = (-2)+2 (-2)}}}\\

  • \longrightarrow {\mathrm {\bf{ a_{3} = -2-4}}}\\

  • \underline{\pink{\boxed {\mathrm {\bf{ a_{2} = -6}}}}}\\

Therefore-:

  • \underline{\pink{\boxed {\mathrm {\bf{ a_{3} \: or\:Third\:term\:of\:A.P \:= -6}}}}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline {\mathrm{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}\:

Hence ,

  • \underline{\pink{\boxed {\mathrm {\bf{ a_{2} \: or\:Second\:term\:of\:A.P \:= -4}}}}}

  • \underline{\pink{\boxed {\mathrm {\bf{ a_{3} \: or\:Third\:term\:of\:A.P \:= -6}}}}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline {\mathrm{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}\:

Similar questions