Math, asked by maariya76, 4 months ago

find semi perimeter and then area of triangle
side - 10 , 8 and 12​

Answers

Answered by Intelligentcat
13

Given :-

  • Sides :-

  • a = 10cm
  • b = 8cm
  • c = 12 cm

Solution :-

Diagram

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\end{picture}

As we all know ,

The perimeter of Triangle ↬ sum of all sides

Perimeter ↬ ( a + b + c )

From given

➤ a = 24 cm

➤ b = 7 cm

➤ c = 25 cm

Now,

Applying the Heron's Formula

 \bold{According \: to \: heron's \: formula} \\ \tt:  \implies  s  = \frac{a + b + c}{2}  \\  \\ \tt:  \implies  s  = \frac{10 + 8 + 12}{2}  \\  \\ \tt:  \implies  s  = \frac{30}{2}  \\  \\  \bf{\tt:  \implies  s  = 15}

Here s is the half perimeter ( semi perimeter )

Lets find area of triangle now ,

\bold{For \: Area \: of \: triangle} \\  \tt:  \implies  Area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)}  \\  \\ \tt:  \implies  Area \: of \: triangle = \sqrt{15(15 - 10)(15 - 8)(15 - 12)}  \\  \\ \tt:  \implies  Area \: of \: triangle = \sqrt{15 \times 5 \times 7\times 3 }  \\  \\ \tt:  \implies  Area \: of \: triangle = \sqrt{1575}  \\  \\  \bf{\tt:  \implies  Area \: of \: triangle =  39.68 \: {cm}^{2} }

_______________________

Answered by prithathakur92
1

Answer:

semi perimeter = (side 1 + side 2 + side 3 ) /2

= ( a+b+c) /2

=( 10+8+12) /2 units

= 30/2 units

= 15units

area = √ {s ( s-a) (s-b) (s-c) } sq. units

= √ { 15( 15-10) (15-8) (15-12) } sq. units

= √ { 15( 5× 7×3) }sq.units

= √ { 15(105) }sq.units

=√ 1575 sq. units

= 39.68 sq. units

Similar questions