Physics, asked by shagunmayank1401, 5 months ago

find separation between A and B after 3 sec is 2 balls with initial speed 0 and 3m/s respectively are thrown from a building​

Answers

Answered by BrainlyConqueror0901
66

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{s_{2} - s_{1} =9 \: m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline{\bold{Given:}}} \\  \tt:  \implies Initial \: speed \: of \: ball \: A = 0 \: m/s \\  \\ \tt:  \implies Initial \: speed \: of \: ball \: B= 3 \: m/s \\  \\  \tt :  \implies Time = 3 \: sec \\  \\ \red{\underline{\bold{To \: Find:}}} \\  \tt:  \implies Sepration \: after \: 3 \: sec =?

• According to given question :

 \green{ \star} \tt \:Acceleration = g = 10 \:  {m/s}^{2}  \\  \\  \bold{As \: we \: know \: that(For \: ball \: A)} \\  \tt:  \implies s_{1} =   u_{1}t +  \frac{1}{2} g {t}^{2}  \\  \\ \tt:  \implies s_{1} = 0 \times 3 +   \frac{1}{2}  \times 10 \times  {3}^{2}  \\  \\ \tt:  \implies s_{1} =5 \times 9 \\  \\  \tt:  \implies s_{1} =45 \: m -  -  -  -  - (1) \\  \\  \bold{Similarly \:( For \:ball \: B)} \\  \tt:  \implies  s_{2}  =  u_{2}t +  \frac{1}{2}  {gt}^{2}  \\  \\ \tt:  \implies  s_{2}  =  3 \times 3 +  \frac{1}{2}  \times 10 \times  {3}^{2}  \\  \\ \tt:  \implies  s_{2}  = 9 + 5 \times 9 \\  \\ \tt:  \implies  s_{2}  = 9 + 45 \\\\ \tt:  \implies  s_{2}  = 54 \: m -  -  -  -  - (2) \\  \\  \text{subtracting \: (1) \: from \: (2)} \\  \\  \tt:  \implies  s_{2} - s_{1} = 54- 45 \\  \\  \green{\tt:  \implies  s_{2} - s_{1} =9 \: m}

Answered by Berseria
77

Answer :

The separation between the ball A and B is 9 m.

Given :

  • time = 3s

  • Initial speed ( ball A )= 0 m/s

  • initial speed ( ball B ) = 3 m/s

To find :

The separation between the thrown balls after 3 s

Formulae Used :

{\bf {\underline{s \:  = ut +  \frac{1}{2} g  {t}^{2} }}}

  • U = initial speed

  • t = time

  • g = Acceleration due to gravity ( 9.8 = 10 m/s²)

Solution :

Substitute the values in equation ,

For finding the ball (A) :

\sf\implies \: s =  u_{1} t+  \frac{1}{2}  \: g {t}^{2}  \\  \\ \implies\sf \: 0 \times 3 +  \frac{1}{2} \times  10 \times  {3}^{2}  \\  \\ \sf\implies \: 0 +  \frac{1}{2}  \times 10 \times 9 \\  \\ \sf\implies \:  5 \times 9 \\  \\ \bf \implies 45

ie, S1 = 45 m

For Ball ( B ) :

\sf\implies \: s =  u_{2} \: t \:  +  \frac{1}{2}  \: g \:  {t}^{2}  \\  \\ \sf\implies \: 3 \times 3 +  \frac{1}{2}  \times 10 \times  {3}^{2}  \\  \\ \sf\implies \: 9 +  \frac{1}{2}  \times 10 \times 9 \\  \\ \sf\implies \: 9 + 5 \times 9 \\  \\ \bf\implies \: 54

ie, S2 = 54 m

Then, To find the separation between them = S2 - S1

\bullet  \:  \: \sf  s_{1} \:  = 45 \\ \sf\bullet \:  \:  s_{2} \:  = 54\\  \\  \sf \: s_{2}  -  s_{1} \:  = 54 - 45 \\ \sf \:  = 9 \: m

_______________________

Similar questions