Math, asked by Nupur5047, 2 months ago

find set of value of K for the curve whoch is y=kx^2-3x and the line y=x-k do not meet

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\:y =  {kx}^{2} - 3x  -  -  - (1)

and the equation of line is

\rm :\longmapsto\:y = x - k -  -  - (2)

Substituting the value of y from equation (2), to equation (1)

\rm :\longmapsto\: {kx}^{2} - 3x = x - k

\rm :\longmapsto\: {kx}^{2} - 3x - x  +  k  = 0

\rm :\longmapsto\: {kx}^{2} - 4x   +  k  = 0

Now, its a quadratic in x.

So, for no point of intersection, Discriminant < 0

\rm :\implies\: {b}^{2} - 4ac &lt; 0

Here,

\rm :\longmapsto\:a = k

\rm :\longmapsto\:b =  - 4

\rm :\longmapsto\:c =  k

So, on substituting the values, we get

\rm :\longmapsto\: {( - 4)}^{2} - 4(k)(k) &lt; 0

\rm :\longmapsto\:16 -  {4k}^{2} &lt; 0

\rm :\longmapsto\:4 -  {k}^{2} &lt; 0

\rm :\longmapsto\:-({k}^{2} - 4) &lt; 0

\rm :\longmapsto\:{k}^{2} - 4 &gt;  0

\rm :\longmapsto\:(k - 2)(k + 2) &gt; 0

We know,

If a and b are positive real numbers such that a < b, and (x - a) (x - b) > 0, then x < a or x > b.

So, using this, we get

\rm :\implies\:k &lt;  - 2 \:  \: or \:  \: k &gt; 2

\bf\implies \:k \:  \in \: ( -  \:  \infty , \:  -  \: 2) \:  \cup \: (2, \:  \infty )

Verification :-

Let assume that k = 3

So, given curve and line can be rewritten as

\rm :\longmapsto\:y = 3 {x}^{2} - 3x

Point of intersection with x - axis.

On x axis, y = 0

So,

\rm :\longmapsto\: {3x}^{2} - 3x = 0

\rm :\longmapsto\: {x}^{2} - x = 0

\rm :\longmapsto\:x(x - 3) = 0

\rm :\longmapsto\:x = 0 \:  \:  \: or \:  \:  \: x = 3

Point of intersection with y- axis

On y - axis, x = 0

\rm :\longmapsto\:y = 0

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x &amp; \bf y \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf 0 &amp; \sf  0 \\ \\ \sf 3 &amp; \sf 0  \end{array}} \\ \end{gathered}

Consider, the equation of line

\rm :\longmapsto\:y = x - 3

On substituting x = 0, we get

\rm :\longmapsto\:y =  - 3

and

On substituting y = 0, we get

\rm :\longmapsto\:x =  3

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x &amp; \bf y \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf 0 &amp; \sf  - 3 \\ \\ \sf 3 &amp; \sf 0  \end{array}} \\ \end{gathered}

See the attachment graph.

We concluded that, given curves don't intersect with each other.

Attachments:
Similar questions