Math, asked by hussainwajid9871, 7 months ago

find Sin 18°/Cos 72°​

Answers

Answered by MoodyCloud
10

To find:-

  •  \sf  \dfrac{sin  \: 18 \degree}{cos \: 72 \degree}

Solution:-

We have ,

 \sf  \dfrac{sin  \: 18 \degree}{cos \: 72 \degree}

By using trigonometric ratio's of complementary angle:

cos (90°- θ) = cos θ

=  \sf  \dfrac{cos\:(90\degree - 18\degree)}{cos \: 72 \degree}

=  \sf  \dfrac{cos \: 72 \degree}{cos \: 72 \degree}

=  \sf 1

Therefore,

 \sf \boxed{ \sf \dfrac{sin  \: 18 \degree}{cos \: 72 \degree}  = 1}

_____________________

More complementary angles:-

  • sin (90° - θ) = cos θ
  • tan (90° - θ) = cot θ
  • cot (90° - θ) = tan θ
  • sec (90° - θ) = cosec θ
  • cosec (90° - θ) = sec θ
Similar questions