Math, asked by rishusinha01, 9 months ago

Find sin(2x), cos(2x), and tan(2x) from the given information.
csc(x) = 6, tan(x) < 0

Answers

Answered by XxMissPaglixX
4

{\huge{\mathtt{\red{AnSwEr:-}}}}

&lt;body bgcolor="orange"&gt;&lt;font color="black"&gt;

Reference angle x is in quadrant II where sin>0, cos<0

sinx=1/cscx=1/6

cosx=-√(1-sin^2(x))=-√(1-1/36)=-√(35/36)=-√35/6

..

sin(2x)=2sinxcosx=2*1/6*-√35/6=-2√35/36

cos(2x)=cos^2(x)-sin^2(x)=35/36-1/36=34/36

tan(2x)=sin(2x)/cos(2x)=-2√35/34

..

check:

sinx=1/6

x≈170.41

2x≈340.81

sin(2x)≈sin(340.81˚)=-0.3287

exact value as computed=-2√35/36≈-0.3287

..

cos(2x)=cos(340.81)≈0.9444

exact value as computed=34/36≈0.9444

..

tan(2x)=tan(340.81)≈-0.3480

exact value as computed=-2√35/34≈-0.3480

ʏᴏᴜʀ ᴀɴsᴡᴇʀ

ʜᴏᴘᴇ ɪᴛ ɪs ʜᴇʟᴘғᴜʟ

ᴛʜᴀɴᴋ ʏᴏᴜ

Answered by adityachoudhary2956
73

&lt;body bgcolor=pink&gt;&lt;font color=black&gt;

\huge\underline\bold \red {♡AnswEr♡}</p><p>

Reference angle x is in quadrant II where sin>0, cos<0

sinx=1/cscx=1/6

cosx=-√(1-sin^2(x))=-√(1-1/36)=-√(35/36)=-√35/6

○○

sin(2x)=2sinxcosx=2*1/6*-√35/6=-2√35/36

cos(2x)=cos^2(x)-sin^2(x)=35/36-1/36=34/36

tan(2x)=sin(2x)/cos(2x)=-2√35/34

○○

check:

sinx=1/6

x≈170.41

2x≈340.81

sin(2x)≈sin(340.81˚)=-0.3287

exact value as computed=-2√35/36≈-0.3287

○○

cos(2x)=cos(340.81)≈0.9444

exact value as computed=34/36≈0.9444

○○

tan(2x)=tan(340.81)≈-0.3480

exact value as computed=-2√35/34≈-0.3480

ɪ ʜᴏᴘᴇ ɪᴛ's ʜᴇʟᴘ ᴜ :)

◦•●◉✿❤Thanks❤✿◉●•◦

Similar questions