Math, asked by sunitalanjewar70, 7 months ago

find sin 2x ,cos 2x tan 2x if sec x =-13/5 π/2<x<π​

Answers

Answered by Nivedita4209
6

Answer:

sin2x=−169120

\cos 2x=\frac{-119}{169}cos2x=169−119

\tan 2x=\frac{120}{119}tan2x=119120

Step-by-step explanation:

Given : If  \sec x=-\frac{13}{5}secx=−513 , \frac{\pi}{2} < x < \pi2π<x<π

To find : \sin 2x,\cos 2x,\tan 2xsin2x,cos2x,tan2x ?

Solution :

We know,  \frac{\pi}{2} < x < \pi2π<x<π x lies in 2nd quadrant.

According to trigonometric properties,

\sec x=-\frac{13}{5}=\frac{H}{B}secx=−513=BH

Applying Pythagorean theorem,

P=\sqrt{H^2-B^2}P=H2−B2

P=\sqrt{(13)^2-(5)^2}P=(13)2−(5)2

P=\sqrt{169-25}P=169−25

P=\sqrt{144}P=144

P=12P=12

Now, \sin x=\frac{P}{H}=\frac{12}{13}sinx=HP=1312

\cos x=\frac{B}{H}=-\frac{5}{13}cosx=HB=−135 (as cos is negative in 2nd quadrant)

Applying trigonometric formulas,

1) \sin 2x=2\sin x\cos xsin2x=2sinxcosx

\sin 2x=2(\frac{12}{13})(\frac{-5}{13})sin2x=2(1312)(13−5)

\sin 2x=-\frac{120}{169}sin2x=−169120

2) \cos 2x=2\cos^2 x-1cos2x=2cos2x−1

\cos 2x=2(\frac{-5}{13})^2-1cos2x=2(13−5)2−1

\cos 2x=\frac{50}{169}-1cos2x=16950−1

\cos 2x=\frac{-119}{169}cos2x=169−119

3) \tan 2x=\frac{\sin 2x}{\cos 2x}tan2x=cos2xsin2x

\tan 2x=\dfrac{\frac{-120}{169}}{\frac{-119}{169}}tan2x=169−119169−120

\tan 2x=\frac{120}{119}tan2x=119120

#Learn more

If cos x = -3/5 and π < x < 3π/2 , find the value of sin2x ,cos2x ,tan2x

Answered by Anonymous
1

Answer:

It's right mate which is written above.... xd...

Similar questions