Find: sin 2x + cos 4x
Answers
Answered by
1
Answer:
y=sin2(x)+cos4(x)————(1)
=1−cos2(x)+cos4(x)
=1−cos2(x)(1−cos2(x))
=1−cos2(x)sin2(x)
=1−4cos2(x)sin2(x)4
=1−(2cos(x)sin(x))24
=1−sin2(2x)4————(2)
As −1≤sin(2x)≤1
⟹0≤sin2(2x)≤1
⟹0≤sin2(2x)4≤14
⟹0≥−sin2(2x)4≥−14
⟹1−14≤1−sin2(2x)4≤1
⟹34≤y≤1
So, range of sin2(x)+cos4(x) is [34, 1]
Similar questions
Math,
4 months ago
Social Sciences,
4 months ago
Math,
4 months ago
Math,
8 months ago
English,
1 year ago