Math, asked by zymar4699, 1 year ago

find sin (45 + theta) - Cos (45 - theta)

Answers

Answered by clockkeeper
0

we know that

 \sin( \alpha  +  \beta )  =  \sin( \alpha  )  \cos( \beta )  +  \cos( \alpha )  \sin( \beta )  \\ and \\  \cos( \alpha  -  \beta )  =  \cos( \alpha )  \cos( \beta )  +  \sin( \alpha )  \sin( \beta )

using it, we get

 \sin(45 +  \theta)  -  \cos(45 -  \theta)  \\  =  \sin(45)  \cos( \theta)  +  \cos(45)  \sin( \theta)  \\  \:  \:  \:  -  \cos(45)  \cos( \theta)  -  \sin(45)  \sin( \theta )  \\  = 0

Similar questions