Math, asked by ankitkumarsinha93, 8 months ago

Find sin 80 – cos 70

a) cos 50

b) cos 40

c) cos 75

d) cos 60

Answers

Answered by sayantikachakrabarti
1

Answer:

Step-by-step explanation:

We have to prove that sin80^{{\circ}}-cos70^{{\circ}}=cos50^{{\circ}}sin80

−cos70

=cos50

⇒sin80^{{\circ}}=cos50^{{\circ}}+cos70^{{\circ}}sin80

=cos50

+cos70

Now, using formula, cos(C+D)= 2cos\frac{C+D}{2}cos\frac{C-D}{2}cos(C+D)=2cos

2

C+D

cos

2

C−D

⇒sin80^{{\circ}}=2 cos\frac{50+70}{2}cos\frac{50-70}{2}sin80

=2cos

2

50+70

cos

2

50−70

⇒sin80^{{\circ}}=2cos60^{{\circ}}cos(-10)^{{\circ}}sin80

=2cos60

cos(−10)

We know that,cos(-\alpha)=cos\alphacos(−α)=cosα ,therefore,

⇒sin80^{{\circ}}=2cos60^{{\circ}}cos10^{{\circ}}sin80

=2cos60

cos10

⇒sin80^{{\circ}}=2{\times}\frac{1}{2}{\times}cos(90^{{\circ}}-80^{{\circ}})sin80

=2×

2

1

×cos(90

−80

)

⇒sin80^{{\circ}}=sin80^{{\circ}}sin80

=sin80

Since, L.H.S=R.H.S, hence proved.

hope this will help

please mark my answer as brainliest

Answered by Anishkabhadana
3

Answer:

Hope it helps uhh.

Mark as brainleist and follow me plz.

Attachments:
Similar questions