find sin pi by 12 (with steps)
Will make u the brainliest..
Answers
Step-by-step explanation:
Trigonometry Angles--Pi/12
cos(pi/(12)) = 1/4(sqrt(6)+sqrt(2))
(1)
cos((5pi)/(12)) = 1/4(sqrt(6)-sqrt(2))
(2)
cot(pi/(12)) = 2+sqrt(3)
(3)
cot((5pi)/(12)) = 2-sqrt(3)
(4)
csc(pi/(12)) = sqrt(6)+sqrt(2)
(5)
csc((5pi)/(12)) = sqrt(6)-sqrt(2)
(6)
sec(pi/(12)) = sqrt(6)-sqrt(2)
(7)
sec((5pi)/(12)) = sqrt(6)+sqrt(2)
(8)
sin(pi/(12)) = 1/4(sqrt(6)-sqrt(2))
(9)
sin((5pi)/(12)) = 1/4(sqrt(6)+sqrt(2))
(10)
tan(pi/(12)) = 2-sqrt(3)
(11)
tan((5pi)/(12)) = 2+sqrt(3).
(12)
These can be derived using
sin(pi/(12)) = sin(pi/3-pi/4)
(13)
= -sin(pi/4)cos(pi/3)+sin(pi/3)cos(pi/4)
(14)
= -1/2sqrt(2)(1/2)+1/2sqrt(3)(1/2sqrt(2))
(15)
= 1/4(sqrt(6)-sqrt(2)).
(16)
Similarly,
cos(pi/(12)) = cos(pi/3-pi/4)
(17)
= cos(pi/4)cos(pi/3)-sin(pi/3)sin(pi/4)
(18)
= 1/2(1/2sqrt(2))+1/2sqrt(3)(-1/2sqrt(2))
(19)
= 1/4(sqrt(6)+sqrt(2)).
(20)
Answer:
sin 22/12 ×7
sin 11/6×7
sin11/42.