find sin.theta such that 3cos theta + 4sin theta = 4
Answers
Hey Dear,
◆ Answer -
sinθ = 1 or sinθ = 7/25
● Explaination -
We'll substitute sinθ = x for easy calculations. Then cosθ = √(1-sin²θ) = √(1-x²).
Now given equation,
3cosθ + 4sinθ = 4
3cosθ = 4 - 4sinθ
3 √(1-x²) = 4(1-x)
Squaring both sides,
9 (1-x²) = 16 (1-2x+x²)
9 - 9x² = 16 - 32x + 16x²
25x² - 32x + 7 = 0
Solving this quadratic eqn,
x = 1 or x = 7/25
sinθ = 1 or sinθ = 7/25
Hence, value of sinθ can be either 1 or 7/25.
Thanks dear..
Answer
sin theta = 1
Step-by-step explanation:
3 cos theta + 4sin theta = 4
3 cos theta = 4 - 4 sin theta
3(√1 - sin^2 theta) = 4 - (4 sin theta) ......(cos^2theta+sin^2theta=1)
squaring both side...
9√1 - sin^2 theta = 16 - 16 sin^2 theta
9 - 9 sin^2 theta = 16 - 16 sin^2 theta
- 9 sin^2 theta + 16 sin^2 theta = 16 - 9
7 sin^2 theta = 7
sin^2 theta = 7/7
sin theta =√7/7
sin theta = 1