Math, asked by asadmalik1010, 11 months ago

find sin theta such that 3cos theta +4sin theta​= 4

Answers

Answered by Anonymous
5

Answer:

\bold\red{\sin\theta=1\:and\:\frac{7}{25}}

Step-by-step explanation:

For simplicity, let's denote theta as alpha.

Now, According to Question,

3 \cos( \alpha )  + 4 \sin( \alpha )  = 4 \\  \\

But, we know that,

 \cos( \alpha )  =  \sqrt{1 -  { (\sin\alpha })^{2} }

so putting this value , we get

further simplifying,

we get,

 =  > 9(1 -  { \sin}^{2}  \alpha ) = 16(1 +  { \sin }^{2} \alpha  - 2 \sin( \alpha )  ) \\  \\   =  > (16 + 9) { \sin }^{2}   \alpha  - 32 \sin( \alpha )  + (16 - 9) = 0 \\  \\  =  > 25 { \sin }^{2}  \alpha  - 32 \sin( \alpha )  + 7 = 0 \\  \\  =  > 25 { \sin }^{2}  \alpha  - 25 \sin( \alpha)  - 7 \sin( \alpha )   + 7 = 0 \\  \\  =  > 25 \sin \alpha  ( \sin\alpha   - 1) - 7( \sin \alpha   - 1) = 0 \\  \\  =  > ( \sin \alpha   - 1)(25 \sin\alpha   - 7) = 0 \\  \\  =  >  \sin( \alpha )  = 1 \:  \:  \:  \: and \:  \:  \:  \:  \frac{7}{25}

Hencw, the value of sin theta is 1 and 7/25.

Similar questions