Math, asked by yashubhpurohitp5a0ia, 1 year ago

Find
Sin²A+1/1+tan²A​

Answers

Answered by spiderman2019
2

Answer:

1

Step-by-step explanation:

Sin²A+1/1+tan²A​

= Sin²A + 1/Sec²A  (∵ 1 + Tan²A = Sec²A)

= Sin²A + Cos²A

= 1

Answered by Tomboyish44
3

Question:

\sf Find: \ sin^{2}A \ + \ \dfrac{1}{1 \ + \ tan^{2}A}

Solution:

\implies \sf sin^{2}A \ + \ \dfrac{1}{1 \ + \ tan^{2}A}

\boxed {\sf{We \ know \ that, \ 1 \ + \ tan^{2}A = sec^{2}A }}

\implies \sf sin^{2}A \ + \ \dfrac{1}{sec^{2}A}

\boxed{\sf{We \ know \ that, \ \dfrac{1}{sec^{2}A} = cosec^{2}A}}

\implies \sf sin^{2}A + cosec^{2}A

\boxed{\sf{We \ know \ that, \ sin^{2}A + cosec^{2}A \ = \ 1}}

\implies \sf 1

\rule{400}{1}

\boxed {\sf sin^{2}A \ + \ \dfrac{1}{1 \ + \ tan^{2}A} = 1}

Similar questions