Math, asked by aayushhedaoo1, 1 year ago

.find sina
 \sin( \alpha )  +  \sqrt{ \sin( \alpha ) +  \sqrt{ \sin( \alpha ) +  \sqrt{ \sin( \alpha ) }  }  }..... \infty  =   { \sec( \beta ) }^{4}

Answers

Answered by shanujindal48p68s3s
1
Given that
 \sin( \alpha )  +  \sqrt{ \sin( \alpha )  +  \sqrt{ \sin( \alpha ) .....} }  =  { \sec ^{4} ( \beta ) } \\  \sin( \alpha )  +  \sqrt{ \sec {}^{4} ( \beta ) }  =  \sec {}^{4} ( \beta )  \\  \sin( \alpha )  +  \sec {}^{2} ( \beta )  =  \sec {}^{4} ( \beta )  \\  \sin( \alpha )  =  \sec {}^{2} ( \beta ) ( \sec {}^{2} ( \beta )  - 1) \\  \sin( \alpha )  =  \sec {}^{2} ( \beta )  \times  \tan {}^{2} ( \beta )
Similar questions