Math, asked by anjumdanish01, 11 months ago

Find singular solution of cos(px - y) = p.​

Answers

Answered by guptasingh4564
0

So The value of x is \frac{2n\pi\pm cos^{-1} p+y}{p}

Step-by-step explanation:

Given;

  cos(px-y)=p

cos(px-y)=cos(cos^{-1} p)    (∵cos(cos^{-1})=1)

We know general solution for,

cos\theta=cos\alpha then

\theta=2n\pi\pm\alpha  where n\varepsilon I

For,

cos(px-y)=cos(cos^{-1} p)

px-y=2n\pi\pm cos^{-1} p

px=2n\pi\pm cos^{-1} p+y

x=\frac{2n\pi\pm cos^{-1} p+y}{p}

∴ The value of x is \frac{2n\pi\pm cos^{-1} p+y}{p}

Similar questions