Math, asked by nishitabhati55, 5 months ago

find sinx/2, cosx/2 and tanx/2. 1. cosx= - 1/3, x in quadrant 3​

Answers

Answered by sparshprabhat
1

Answer:

my teachers answer not mine!\

Step-by-step explanation:

1)Cos(x)=−13, x is in quad 3

Using double angle formula :

Cos(x)=2cos2(x2)−1=1−sin2(x2)

Cos(x)=−13=2cos2(x2)−1

2cos2(x2)=−13+1

cos2(x2)=−13+12

cos2(x2)=13

cos(x2)=±1√3

Cos(x)=−13=1−2sin2(x2)

2sin2(x2)=1−−13

sin2(x2)=1+132

sin2(x2)=46

sin(x2)=±√(23)

Tan(x2)=sin(x2)cos(x2)=±√(23)±1√3

Tan(x2)=±√2

Given that x lies in quad 3. i.e, it lies between 180°and 270°. 180°>x>270°. Then, for x2:180°2>x2>270°2=90°>x2>135°. Hence x2 lies in quad 2. In quad 2 only sine has positive value.

Therefore we have following:

cos(x2)=−1√3

sin(x2)=√(23)

Tan(x2)=−√2

….

2)tan(x)=34,x is in the quad 3.

Here, again we use double angle formula:

Tan(x)=2tan(x2)1−tan2(x2)

Tan(x)=34=2tan(x2)1−tan2(x2)

34(1−tan2(x2))−2tan(x2)=0

34−34(tan2(x2))−2tan(x2)=0

Let tan(x2)=t.

Then,34−34(tan2(x2))−2tan(x2)=34−34(t2)−2t=0

Thus we have a quadratic equation whose solution is given by

t=−b±√(b2−4ac)2a=−b±√D2a

where, discriminant, D=b2−4ac decides the number and nature if the solution of t.

D=b2−4ac=82−4∗(3)(−3)=64−(−36)=100

Since Dis positive the solution will be two distinct real roots.

tan(x2)=t=−b±√D2a=−8±√1002(3)

tan(x2)=−8±106=13,−3

As we have already seen above that x is quad 3then x2is in quad 2 where tan(x) is negative. Thus,tan(x2)=−3

cos(x)=1−tan2(x2)1+tan2(x2)=1−(−3)21+(−3)2

Cos(x)=1−91+9=−45

Then, as in the above we can obtain cos(x2) and sin(x2)

Cos(x)=−45=2cos2(x2)−1

2cos2(x2)=−45+1

cos2(x2)=−45+12

cos2(x2)=110

cos(x2)=±1√10

Since, x2is in quad 2 we know that cosine is also negative. Thus,cos(x2)=−1√10

Cos(x)=−45=1−2sin2(x2)

2sin2(x2)=1−−45

sin2(x2)=1+452

sin2(x2)=910

sin(x2)=±(3√10)

Since,x2is in quad 2 we know that sine is positive. Thus,sin(x2)=(3√10).

Therefore we have following:

tan(x2)=−3

cos(x2)=−1√10

sin(x2)=(3√10)

Similar questions