Math, asked by sugyani7, 5 months ago

find Sn of the series.
2*5*8+5*8*11+8*11*14+..........​

Answers

Answered by BrainlyPopularman
21

GIVEN :

A Series –

  \\ \implies \bf \: 2.5.8 + 5.8.11 + 8.11.14 +.............\\

TO FIND :

  \\ \implies \bf \: S_n = ? \\

SOLUTION :

  \\ \implies \bf \: 2.5.8 + 5.8.11 + 8.11.14 +.............\\

• First sequence in this series –

  \\ \implies \bf \:T_1 = 2 + 5 + 8+.............\\

  \\ \implies \bf \:T_1 =2 + (n - 1)3 \\

  \\ \implies \bf \:T_1 =2 +3n -3 \\

  \\  \large\implies{ \boxed{ \bf T_1 =3n -1}}\\

• Second sequence in this series –

  \\ \implies \bf \:T_2 = 5 + 8+11+.............\\

  \\ \implies \bf \:T_2 =5 + (n - 1)3 \\

  \\ \implies \bf \:T_2 =5+3n -3 \\

  \\  \large\implies{ \boxed{ \bf T_2 =3n+2}}\\

• Third sequence in this series –

  \\ \implies \bf \:T_3 = 8+11+14+.............\\

  \\ \implies \bf \:T_3 =8 + (n - 1)3 \\

  \\ \implies \bf \:T_3 =8+3n -3 \\

  \\  \large\implies{ \boxed{ \bf T_3 =3n+5}}\\

▪︎ So that nth term of given series –

  \\\large\implies{ \boxed{ \bf T_n=(3n -1)(3n + 2)(3n+5)}}\\

• We know that –

  \\\implies \bf S_n = \sum T_n\\

  \\\implies \bf S_n = \sum (3n -1)(3n + 2)(3n+5)\\

  \\\implies \bf S_n = \sum (9 {n}^{2} + 3n - 2)(3n+5)\\

  \\\implies \bf S_n = \sum (9 {n}^{2} + 3n - 2)(3n)+(5)(9 {n}^{2} + 3n - 2)\\

  \\\implies \bf S_n = \sum 27 {n}^{3} + 9 {n}^{2} - 6n +45{n}^{2} +15n - 10\\

  \\\implies \bf S_n = \sum 27 {n}^{3} + 54{n}^{2}  + 9n - 10\\

  \\\implies \bf S_n = 27\sum{n}^{3} + 54 \sum{n}^{2}  + 9 \sum n - 10 \sum (1)\\

  \\\implies \bf S_n = 27 \bigg[\dfrac{n(n + 1)}{2}  \bigg]^{2} + 54 \bigg[\dfrac{n(n + 1)(2n + 1)}{6} \bigg]+ 9 \bigg[\dfrac{n(n + 1)}{2}  \bigg]- 10n\\

▪︎Used Identity :–

 \\ \longrightarrow \bf \sum{n}^{3}=\bigg[\dfrac{n(n + 1)}{2} \bigg]^{2}\\

 \\ \longrightarrow \bf \sum{n}^{2}=\bigg[\dfrac{n(n + 1)(2n + 1)}{6} \bigg]\\

 \\ \longrightarrow \bf \sum n=\bigg[\dfrac{n(n + 1)}{2}  \bigg]\\

 \\ \longrightarrow \bf \sum(1)=n\\


pulakmath007: Superb
BrainlyPopularman: Thank you sir
Answered by vinshultyagi
27

GIVEN :–

• A Series –

\begin{gathered} \\ \implies \bf \: 2.5.8 + 5.8.11 + 8.11.14 +.............\\ \end{gathered}

TO FIND :–

\begin{gathered} \\ \implies \bf \: S_n = ? \\ \end{gathered}

SOLUTION :–

\begin{gathered} \\ \implies \bf \: 2.5.8 + 5.8.11 + 8.11.14 +.............\\ \end{gathered}

• First sequence in this series :–

\begin{gathered} \\ \implies \bf \:T_1 = 2 + 5 + 8+.............\\ \end{gathered}

\begin{gathered} \\ \implies \bf \:T_1 =2 + (n - 1)3 \\ \end{gathered}

\begin{gathered} \\ \implies \bf \:T_1 =2 +3n -3 \\ \end{gathered}

\begin{gathered} \\ \large\implies{ \boxed{ \bf T_1 =3n -1}}\\ \end{gathered}

• Second sequence in this series :–

\begin{gathered} \\ \implies \bf \:T_2 = 5 + 8+11+.............\\ \end{gathered}

\begin{gathered} \\ \implies \bf \:T_2 =5 + (n - 1)3 \\ \end{gathered}

\begin{gathered} \\ \implies \bf \:T_2 =5+3n -3 \\ \end{gathered}

\begin{gathered} \\ \large\implies{ \boxed{ \bf T_2 =3n+2}}\\ \end{gathered}

• Third sequence in this series :–

\begin{gathered} \\ \implies \bf \:T_3 = 8+11+14+.............\\ \end{gathered}

\begin{gathered} \\ \implies \bf \:T_3 =8 + (n - 1)3 \\ \end{gathered}

\begin{gathered} \\ \implies \bf \:T_3 =8+3n -3 \\ \end{gathered}

\begin{gathered} \\ \large\implies{ \boxed{ \bf T_3 =3n+5}}\\ \end{gathered}

▪︎ So that nth term of given series: –

\begin{gathered} \\\large\implies{ \boxed{ \bf T_n=(3n -1)(3n + 2)(3n+5)}}\\ \end{gathered}

• We know that :–

\begin{gathered} \\\implies \bf S_n = \sum T_n\\ \end{gathered}

\begin{gathered} \\\implies \bf S_n = \sum (3n -1)(3n + 2)(3n+5)\\ \end{gathered}

\begin{gathered} \\\implies \bf S_n = \sum (9 {n}^{2} + 3n - 2)(3n+5)\\ \end{gathered}

\begin{gathered} \\\implies \bf S_n = \sum (9 {n}^{2} + 3n - 2)(3n)+(5)(9 {n}^{2} + 3n - 2)\\ \end{gathered}

\begin{gathered} \\\implies \bf S_n = \sum 27 {n}^{3} + 9 {n}^{2} - 6n +45{n}^{2} +15n - 10\\ \end{gathered}

\begin{gathered} \\\implies \bf S_n = \sum 27 {n}^{3} + 54{n}^{2} + 9n - 10\\ \end{gathered}

\begin{gathered} \\\implies \bf S_n = 27\sum{n}^{3} + 54 \sum{n}^{2} + 9 \sum n - 10 \sum (1)\\ \end{gathered}

\begin{gathered} \\\implies \bf S_n = 27 \bigg[\dfrac{n(n + 1)}{2} \bigg]^{2} + 54 \bigg[\dfrac{n(n + 1)(2n + 1)}{6} \bigg]+ 9 \bigg[\dfrac{n(n + 1)}{2} \bigg]- 10n\\ \end{gathered}

▪︎Used Identity :–

\begin{gathered} \\ \longrightarrow \bf \sum{n}^{3}=\bigg[\dfrac{n(n + 1)}{2} \bigg]^{2}\\ \end{gathered}

\begin{gathered} \\ \longrightarrow \bf \sum{n}^{2}=\bigg[\dfrac{n(n + 1)(2n + 1)}{6} \bigg]\\ \end{gathered}

\begin{gathered} \\ \longrightarrow \bf \sum n=\bigg[\dfrac{n(n + 1)}{2} \bigg]\\ \end{gathered}

\begin{gathered} \\ \longrightarrow \bf \sum(1)=n\\ \end{gathered}

Similar questions