Math, asked by mramzaniubedu, 2 days ago

Find solutions of equation x^2+y^2+z^2=8x-2z-8 if x is natural number and y zEZ.

Answers

Answered by senboni123456
7

Step-by-step explanation:

We have,

 {x}^{2}  +  {y}^{2}  +  {z}^{2}  = 8x - 2z - 8

 \implies {x}^{2}  - 8x +  {y}^{2}  +  {z}^{2}   +  2z  + 8  = 0\\

 \implies {x}^{2}  - 8x + 16 +  {y}^{2}  +  {z}^{2}   +  2z  + 1 - 1 + 8  - 16 = 0\\

 \implies (x - 4)^{2}   +  {y}^{2}  +  (z + 1)^{2}    + 7  - 16 = 0\\

 \implies (x - 4)^{2}   +  {y}^{2}  +  (z + 1)^{2}    = 9\\

We are given, x\in\mathbb{N} and y,z\in\mathbb{Z}

So,

One solution will be x=1,y=0,z=-1

Answered by anjumanyasmin
0

Given:

x=4-\sqrt{8-y^{2}-z^{2}-2 z} \text { or } x=4+\sqrt{8-y^{2}-z^{2}-2 z}

\text { Solve the equations: } x=4-\sqrt{8-y^{2}-z^{2}-2 z} \text { or } x=4+\sqrt{8-y^{2}-z^{2}-2 z}

\text { Answer: } x=4-\sqrt{8-y^{2}-z^{2}-2 z} \text { or } x=4+\sqrt{8-y^{2}-z^{2}-2 z}

Similar questions