Math, asked by adityanaman8, 2 months ago

find squar root of
14 + 6 \sqrt{5}
dont spam​

Answers

Answered by LaCheems
27

{\huge{\boxed{\underline{\textbf{\textsf{\color{lightpink}{An}{\color{lightblue}{sw}{\color{lightgreen}{er:}}}}}}}}}

To Solve:

  • find squar root of 14 + 6√5

Solⁿ:

14 + 6√5

 = 9 + 5 + 6 \sqrt{5} \:  \: (splitting \:  \: 14 \:  \: as \:  \: 9 + 5)

Now, 9 is 3²

=  {3}^{2}  +  { \sqrt{5} }^{2}  + 6 \sqrt{5}

=  {3}^{2}  +6 \sqrt{5}  + \sqrt{5}

Now, 6 is 2×3

 =  {3}^{2} + 2 \times 3 \times  \sqrt{5} +{ \sqrt{5} }^{2}

Applying the Identity: (a+b)² = a² + b² + 2ab

So,

14 + 6 \sqrt{5}  =   \sqrt{{ (3 +  \sqrt{5})}^{2}}

Square  \:  \: root  \:  \: of \:  \:  14 + 6 \sqrt{5}  = 3 +  \sqrt{5}

HOPE IT WAS USEFUL~

Similar questions