Math, asked by Atharva312002, 1 year ago

find square root of 3 + 2√10i​

Answers

Answered by brunoconti
30

Answer:

Step-by-step explanation:

Attachments:
Answered by Raghav1330
4

To Find:

\sqrt{3} + 2\sqrt{10}i

Solution:

  √3 + 2√10i = a+ bi

Now, squaring on both the sides

= a² + b²i²+ 2abi    (i² = -1)

= 3+ 2√10i = (a²-b²)+ 2abi

= a² - b² = 3  and 2ab = 2√10

                                  a = \frac{\sqrt{10} }{b}

        \frac{\sqrt{10} }{b})² - b² = 3

      \frac{10}{b^{2} } - b² = 3

       Multiplying the whole equation by b²

10- b^{4} = 3b²

b^{4} + 3b²-10 = 0

Let b² be m

m²+ 3m-10=0

m² +5m-2m-10 = 0

m(m+5)-2(m+5) = 0

(m = 2) or (m = 5) = 0

m = -2 or m = -5

Since b² = m

b = ±√2

a = ±√5

Therefore, the square root of 3+ 2√10i = ±(√5 - √2).

Similar questions