Math, asked by vishnuvardhan5119, 1 year ago

Find square root of 3969 by prime factorization

Answers

Answered by sureshhazarika33
106

The square root of 3969 is 63. Prime factorisation is given below —

Attachments:
Answered by payalchatterje
2

Answer:

Required square root is 63.

Step-by-step explanation:

Given number is 3969

Here we want to find square root of the given digit.

By prime factorisation, first we need to break 3969 into prime numbers.

3969 = 3 \times 3 \times 3 \times 3 \times 7 \times 7

Square root of 3969

  \sqrt{3969}  \\ =  \sqrt{3 \times 3 \times 3 \times 3 \times 7 \times 7}  \\  =  \sqrt{ {3}^{2}  \times  {3}^{2}  \times  {7}^{2} } \\   =  {({3}^{2}  \times  {3}^{2}  \times  {7}^{2})}^{ \frac{1}{2} }  \\  = 3 \times 3 \times 7 \\  = 63

Square value list upto 30,

{1}^{2}  = 1 \\  {2}^{2}  = 4 \\  {3}^{2}  = 9 \\  {4}^{2}  = 16 \\  {5}^{2}  = 25 \\  {6}^{2}  = 36 \\  {7}^{2}  = 49 \\  {8}^{2}  = 64 \\  {9}^{2}  = 81 \\  {10}^{2}  = 100 \\  {11}^{2}  = 121 \\  {12}^{2}  = 144 \\  {13}^{2}  = 169 \\  {14}^{2}  = 196 \\  {15}^{2}  = 225 \\  {16}^{2}  = 256 \\  {17}^{2}  = 289 \\  {18}^{2}  = 324 \\  {19}^{2}  = 361 \\  {20}^{2}  = 400 \\  {21}^{2}  = 441 \\  {22}^{2}  = 484 \\  {23}^{2}  = 529 \\  {24}^{2}  = 576 \\  {25}^{2}  = 625 \\  {27}^{2}  = 729 \\  {28}^{2}  = 784 \\  {29}^{2}  = 841 \\   {30}^{2}  = 900

Similar questions