Math, asked by husnein2530, 3 months ago

Find square root of 4225 using prime factor methods ​

Answers

Answered by Anonymous
11

Once refer attachment :-

Step - 1 :-

First 4225 Resolve into prime factors Using prime factorisation

\begin{array}{c|c}\sf5&\sf4225\\ \cline{2-2}\sf5&\sf845\\ \cline{2-2}\sf13&\sf169\\ \cline{2-2}\sf13&\sf13\\ \cline{2-2}&\sf1\end{array}

It can be written as (5×5)×(13×13)

Step -2 :-

We can observe 5, 13 exists in pairs

Step :- 3

Now ,

\sf\sqrt{4225} = \sf\sqrt{(5\times5) \times (13\times13)}

\sf\sqrt{4225} = \sf\sqrt{(5)^2 \times(13)^2}

\sf\sqrt{4225} = \sf\sqrt{(5\times13)^2}

\sf\sqrt{4225} = 5×13

\sf\sqrt{4225} = 65

So, square root of 4225 is 65

Note :-

Kindly See the answer from web

Attachments:
Similar questions