Math, asked by yeaboy, 19 days ago

find square root usig division​

Attachments:

Answers

Answered by mathdude500
8

Question :-

Find the square root of the following by Long Division Method

a) 7225

b) 961

c) 8649

\large\underline{\sf{Solution-a}}

\rm \:  \sqrt{7225}

So, using Long Division Method, we have

\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:85 \:\:}}}\\ {\underline{\sf{8}}}& {\sf{\:\:7225\:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \:  \:  \:  \: \: \:64 \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{165}}}& {\sf{\:\: 825   \:\:}} \\{\sf{}}& \underline{\sf{\:\:825 \:  \:}}  \\ {\underline{\sf{}}}& {\sf{\: \: 0\:\:}} \end{array}\end{gathered}\end{gathered} \\

Hence,

\rm\implies \: \sqrt{7225}  = 85

\large\underline{\sf{Solution-b}}

\rm \:  \sqrt{961}

So, using Long Division Method, we have

\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:31 \:\:}}}\\ {\underline{\sf{3}}}& {\sf{\:\:961\:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \:  \:  \:  \: \: \:9 \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{61}}}& {\sf{\:\:  \:  \: 061   \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \: 61 \:  \:}}  \\ {\underline{\sf{}}}& {\sf{\: \:  \:  \:  \: 0\:\:}} \end{array}\end{gathered}\end{gathered} \\

Hence,

\rm\implies \: \sqrt{961} = 31

\large\underline{\sf{Solution-c}}

\rm \:  \sqrt{8649}

So, using Long Division Method, we have

\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:93\:\:}}}\\ {\underline{\sf{9}}}& {\sf{\:\:8649\:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \:  \:  \:  \: \: \:81 \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{183}}}& {\sf{\:\: 549   \:\:}} \\{\sf{}}& \underline{\sf{\:\:549 \:  \:}}  \\ {\underline{\sf{}}}& {\sf{\: \: 0\:\:}} \end{array}\end{gathered}\end{gathered} \\

Hence,

\rm\implies \: \sqrt{8649} = 93

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

1. The number of digits in square root of consisting of 2n + 1 number of digits is n + 1.

2. The number of digits in square root of consisting of 2n number of digits is n.

3. The number of natural number lying between squares of two consecutive natural number n and n + 1 is 2n.

4. The sum of first n odd natural numbers is square of number of odd natural numbers.

For example :- 1 + 3 + 5 + 7 = 4² = 16

Answered by as3801504
0

Answer in attachment

hope it helpful for you

Attachments:
Similar questions