Math, asked by rashmikol8145, 1 year ago

Find sum 2/5+3/5²+2/5³+3/5⁴+...........to infinity

Answers

Answered by Anonymous
51

\underline{\underline{\mathfrak{\Large{Solution : }}}}



\sf = \dfrac{2}{5} \: + \: \dfrac{3}{5^2} \: + \: \dfrac{2}{5^3} \: + \: \dfrac{3}{5^4} \: + ..... \:  \infty


\textsf{Rearranging the terms , } \\ \\ \sf = \: \left\{\dfrac{2}{5} \: + \: \dfrac{2}{5^3} \: + \: \dfrac{2}{5^5} \: + ..... \: \infty \right\} \: + \:  \left\{\dfrac{3}{5^2} \: + \: \dfrac{3}{5^4} \: + \: \dfrac{3}{5^6} \: + ..... \: \infty \right\}



\sf = \: \left\{2 \underbrace{\left (\dfrac{1}{5} \: + \: \dfrac{1}{5^3} \: + \: \dfrac{1}{5^5} \: + ..... \: \infty \right) }_{This \: Part \: forms \: an \: infinite \: G.P.} \right\} \: + \:  \left\{3  \underbrace{\left(\dfrac{1}{5^2} \: + \: \dfrac{1}{5^4} \: + \: \dfrac{1}{5^6} \: + ..... \: \infty \right)} _ {This \: Part \: too \: forms \: an \: infinite \: G.P.}\right\}



\underline{\textsf{For First G.P.,}} \\ \\ \sf \implies First \: term(a_1) \: = \: \dfrac{1}{5} \\ \\ \sf \implies Common \: ratio (r_1 ) \: = \: \dfrac{1}{5^3} \: \div \: \dfrac{1}{5}  \\  \\  \sf \qquad \:   \qquad \qquad  \qquad \qquad \: =  \dfrac{1}{5 {}^{3}} \:   \times   \: 5 \:  =  \:  \dfrac{1}{ {5}^{2} }



\underline{\textsf{For Second  G.P.,}} \\ \\ \sf \implies First \: term(a_2) \: = \: \dfrac{1}{ {5}^{2} } \\ \\ \sf \implies Common \: ratio (r_2 ) \: = \: \dfrac{1}{5^4} \: \div \: \dfrac{1}{ {5}^{2} }  \\  \\  \sf \qquad \:   \qquad \qquad  \qquad \qquad \: =  \dfrac{1}{5 {}^{4}} \:   \times   \:  {5}^{2}  \:  =  \:  \dfrac{1}{ {5}^{2} }




\underline{\textsf{Using Formula : }} \\ \\ \sf \implies S_{\infty} \: = \: \dfrac{a}{1 \: - \: r }  \quad \{ Where , \: r  \:   &lt;  \:  |1|  \}<br />




\sf  = \left\{ 2\left(\dfrac{\dfrac{1}{5}}{ 1 \: - \: \dfrac{1}{5^2}} \right) \right\}  \:  +  \:  \left\{ 3\left(\dfrac{\dfrac{1}{ {5}^{2} }}{ 1 \: - \: \dfrac{1}{5^2}} \right) \right\}  \\  \\  \\  \sf  = 2 \left(  \dfrac{ \dfrac{1}{5} }{1 \:  -  \:  \dfrac{1}{25} }  \right) \:  +  \: 3 \left(  \dfrac{ \dfrac{1}{25} }{1 \:  -  \:  \dfrac{1}{25} }  \right)




\sf  = 2 \left(  \dfrac{ \dfrac{1}{5} }{ \dfrac{25 \:  -  \: 1}{25} }  \right) \:  +  \: 3 \left(  \dfrac{ \dfrac{1}{25} }{\dfrac{25 \:  -  \: 1}{25} }  \right)  \\  \\  \\ \sf  = 2 \left(  \dfrac{  \quad\dfrac{1}{5}  \quad}{  \dfrac{24}{25} }  \right) \:  +  \: 3 \left(  \dfrac{ \quad \dfrac{1}{ \cancel{25}} \quad }{\dfrac{24}{ \cancel{25} }}  \right)  \\  \\  \\  \sf = 2 \left(  \dfrac{1}{5} \:  \div  \:  \dfrac{24}{25}  \right) \:  +  \:  \dfrac{3}{24}  \\  \\  \\  \sf = 2 \left( \dfrac{1}{5}  \:  \times  \:  \dfrac{25}{24}  \right) \:  +  \:  \dfrac{3}{24}  \\  \\  \\  \sf = 2 \:   \times  \:  \dfrac{5}{24}  \:  +  \:  \dfrac{3}{24}




\sf = \dfrac{10}{24} \: + \: \dfrac{3}{24} \\ \\ \sf = \dfrac{10 \: + \: 3 }{24} \\ \\ \sf = \dfrac{13}{24}

Mankuthemonkey01: Awesome
Anonymous: Thanks !
Answered by avinashsingh48
12

\underline{\underline{\mathfrak{\Large{Solution : }}}}



\sf = \dfrac{2}{5} \: + \: \dfrac{3}{5^2} \: + \: \dfrac{2}{5^3} \: + \: \dfrac{3}{5^4} \: + ..... \: \infty


\textsf{Rearranging the terms , } \\ \\ \sf = \: \left\{\dfrac{2}{5} \: + \: \dfrac{2}{5^3} \: + \: \dfrac{2}{5^5} \: + ..... \: \infty \right\} \: + \: \left\{\dfrac{3}{5^2} \: + \: \dfrac{3}{5^4} \: + \: \dfrac{3}{5^6} \: + ..... \: \infty \right\}



\sf = \: \left\{2 \underbrace{\left (\dfrac{1}{5} \: + \: \dfrac{1}{5^3} \: + \: \dfrac{1}{5^5} \: + ..... \: \infty \right) }_{This \: Part \: forms \: an \: infinite \: G.P.} \right\} \: + \: \left\{3 \underbrace{\left(\dfrac{1}{5^2} \: + \: \dfrac{1}{5^4} \: + \: \dfrac{1}{5^6} \: + ..... \: \infty \right)} _ {This \: Part \: too \: forms \: an \: infinite \: G.P.}\right\}



\underline{\textsf{For First G.P.,}} \\ \\ \sf \implies First \: term(a_1) \: = \: \dfrac{1}{5} \\ \\ \sf \implies Common \: ratio (r_1 ) \: = \: \dfrac{1}{5^3} \: \div \: \dfrac{1}{5} \\ \\ \sf \qquad \: \qquad \qquad \qquad \qquad \: = \dfrac{1}{5 {}^{3}} \: \times \: 5 \: = \: \dfrac{1}{ {5}^{2} }



\underline{\textsf{For Second G.P.,}} \\ \\ \sf \implies First \: term(a_2) \: = \: \dfrac{1}{ {5}^{2} } \\ \\ \sf \implies Common \: ratio (r_2 ) \: = \: \dfrac{1}{5^4} \: \div \: \dfrac{1}{ {5}^{2} } \\ \\ \sf \qquad \: \qquad \qquad \qquad \qquad \: = \dfrac{1}{5 {}^{4}} \: \times \: {5}^{2} \: = \: \dfrac{1}{ {5}^{2} }




\underline{\textsf{Using Formula : }} \\ \\ \sf \implies S_{\infty} \: = \: \dfrac{a}{1 \: - \: r } \quad \{ Where , \: r \: &lt; \: |1| \}<br />




\sf = \left\{ 2\left(\dfrac{\dfrac{1}{5}}{ 1 \: - \: \dfrac{1}{5^2}} \right) \right\} \: + \: \left\{ 3\left(\dfrac{\dfrac{1}{ {5}^{2} }}{ 1 \: - \: \dfrac{1}{5^2}} \right) \right\} \\ \\ \\ \sf = 2 \left( \dfrac{ \dfrac{1}{5} }{1 \: - \: \dfrac{1}{25} } \right) \: + \: 3 \left( \dfrac{ \dfrac{1}{25} }{1 \: - \: \dfrac{1}{25} } \right)




\sf = 2 \left( \dfrac{ \dfrac{1}{5} }{ \dfrac{25 \: - \: 1}{25} } \right) \: + \: 3 \left( \dfrac{ \dfrac{1}{25} }{\dfrac{25 \: - \: 1}{25} } \right) \\ \\ \\ \sf = 2 \left( \dfrac{ \quad\dfrac{1}{5} \quad}{ \dfrac{24}{25} } \right) \: + \: 3 \left( \dfrac{ \quad \dfrac{1}{ \cancel{25}} \quad }{\dfrac{24}{ \cancel{25} }} \right) \\ \\ \\ \sf = 2 \left( \dfrac{1}{5} \: \div \: \dfrac{24}{25} \right) \: + \: \dfrac{3}{24} \\ \\ \\ \sf = 2 \left( \dfrac{1}{5} \: \times \: \dfrac{25}{24} \right) \: + \: \dfrac{3}{24} \\ \\ \\ \sf = 2 \: \times \: \dfrac{5}{24} \: + \: \dfrac{3}{24}




\sf = \dfrac{10}{24} \: + \: \dfrac{3}{24} \\ \\ \sf = \dfrac{10 \: + \: 3 }{24} \\ \\ \sf = \dfrac{13}{24}
Similar questions