Math, asked by priyasingh05776, 10 months ago

find sum of infinity
3, 6/5 , 9/25 , 12/125 , 15/625, .......​

Answers

Answered by MaheswariS
3

\underline{\textsf{Given:}}

\mathsf{3,\dfrac{6}{5},\dfrac{9}{25},\dfrac{12}{125},........}

\underline{\textsf{To find:}}

\textsf{Sum to infinite terms of the given sequence}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{3,\dfrac{6}{5},\dfrac{9}{25},\dfrac{12}{125},........}

\textsf{clearly, it is an arithmetico-geometric sequence}

\mathsf{with\;a=3,r=\dfrac{1}{5}\;and\;d=3}

\textsf{Then,}

\textsf{Sum to infinite terms of the sequence}

\mathsf{S_{\infty}=\dfrac{a}{1-r}+\dfrac{dr}{(1-r)^2}}

\mathsf{S_{\infty}=\dfrac{1}{1-\dfrac{1}{5}}+\dfrac{3(\dfrac{1}{5})}{(1-\dfrac{1}{5})^2}}

\mathsf{S_{\infty}=\dfrac{1}{\dfrac{4}{5}}+\dfrac{\dfrac{3}{5}}{(\dfrac{4}{5})^2}}

\mathsf{S_{\infty}=\dfrac{5}{4}+\dfrac{\dfrac{3}{5}}{\dfrac{16}{25}}}

\mathsf{S_{\infty}=\dfrac{5}{4}+\dfrac{3}{5}{\times}\dfrac{25}{16}}

\mathsf{S_{\infty}=\dfrac{5}{4}+\dfrac{3}{1}{\times}\dfrac{5}{16}}

\mathsf{S_{\infty}=\dfrac{5}{4}+\dfrac{15}{16}}

\mathsf{S_{\infty}=\dfrac{20+15}{16}}

\mathsf{S_{\infty}=\dfrac{35}{16}}

\implies\boxed{\mathsf{S_{\infty}=\dfrac{35}{16}}}

\underline{\textsf{Answer:}}

\textsf{The sum to infinite terms of the given sequence is}\;\mathsf{\dfrac{35}{16}}

Find more:

Find the sum to infinite terms of the series 1+5x+9x^2+13x^3+.....

Where |x| <1

https://brainly.in/question/25340075

Answered by sn1284870
1

Answer:

Step-by-step explanation:

45/4

Similar questions